Thermal model for dc characteristics of algan/gan hemts including self-heating effect and non-linear polarization

A thermal model based on the polynomial relationship of n"s and E"F is presented. The effect of temperature rise due to self-heating is studied on various parameters viz. polarization, electron mobility, velocity saturation, low-field mobility and thermal conductivity of substrate. Parasitic resistances and channel length modulation were also taken into consideration. The relationship between self-heating effect and device parameters was studied. The model is based on closed-form expressions and does not require elaborate computation. After including self-heating effect in calculations of current-voltage characteristics, our results agreed well with published experimental data.

[1]  J. Kuzmík,et al.  Determination of channel temperature in AlGaN/GaN HEMTs grown on sapphire and silicon substrates using DC characterization method , 2002 .

[2]  Frank Schwierz,et al.  An electron mobility model for wurtzite GaN , 2005 .

[3]  A. Souifi,et al.  Traps centers and deep defects contribution in current instabilities for AlGaN/GaN HEMT's on silicon and sapphire substrates , 2006, Microelectron. J..

[4]  K. Y. Tong,et al.  A thermal model for static current characteristics of AlGaN∕GaN high electron mobility transistors including self-heating effect , 2006 .

[5]  Takashi Jimbo,et al.  Surface passivation effects on AlGaN/GaN high-electron-mobility transistors with SiO2, Si3N4, and silicon oxynitride , 2004 .

[6]  H.A. Hung,et al.  Thermal resistance calculation of AlGaN-GaN devices , 2004, IEEE Transactions on Microwave Theory and Techniques.

[7]  C.G. Sodini,et al.  The effect of high fields on MOS device and circuit performance , 1984, IEEE Transactions on Electron Devices.

[8]  J. Laskar,et al.  Thermal analysis of AlGaN-GaN power HFETs , 2003 .

[9]  C.C. Lee,et al.  Thermal modeling and measurement of GaN-based HFET devices , 2003, IEEE Electron Device Letters.

[10]  M. Shur,et al.  Self-heating in high-power AlGaN-GaN HFETs , 1998, IEEE Electron Device Letters.

[11]  Lester F. Eastman,et al.  Undoped AlGaN/GaN HEMTs for microwave power amplification , 2001 .

[12]  Temperature and polarization dependent polynomial based non-linear analytical model for gate capacitance of AlmGa1−mN/GaN MODFET , 2006 .

[13]  R. Gupta,et al.  Parasitic resistance and polarization‐dependent polynomial‐based non‐linear analytical charge‐control model for AlGaN/GaN MODFET for microwave frequency applications , 2003 .

[14]  Electrothermal Monte Carlo simulation of submicron wurtzite GaN/AlGaN HEMTs , 2007 .

[15]  Oliver Ambacher,et al.  Evidence for nonlinear macroscopic polarization in III-V nitride alloy heterostructures , 2002 .

[16]  S. Denbaars,et al.  High power AlGaN/GaN HEMTs for microwave applications , 1997 .

[17]  Hermann A. Haus,et al.  Signal and Noise Properties of Gallium Arsenide Microwave Field-Effect-Transistors , 1975 .

[18]  Remo Guidieri Res , 1995, RES: Anthropology and Aesthetics.

[19]  S. R. Kurtz,et al.  Self-heating study of an AlGaN∕GaN-based heterostructure field-effect transistor using ultraviolet micro-Raman scattering , 2005 .

[20]  Sorab K. Ghandhi,et al.  General theory for pinched operation of the junction-gate FET , 1969 .

[21]  M. K. Chattopadhyay,et al.  Analytical model for the transconductance of microwave AlmGa1−mN/GaN HEMTs including nonlinear macroscopic polarization and parasitic MESFET conduction , 2007 .

[22]  J. Lienhard A heat transfer textbook , 1981 .

[23]  Mario G. Ancona,et al.  AlGaN/GaN heterostructure field-effect transistor model including thermal effects , 2000 .

[24]  David J. Allstot,et al.  Modeling of frequency and temperature effects in GaAs MESFETs , 1990 .

[25]  G. Simin,et al.  Thermal management of AlGaN-GaN HFETs on sapphire using flip-chip bonding with epoxy underfill , 2003, IEEE Electron Device Letters.

[26]  T. Sadi,et al.  Electrothermal Monte Carlo Simulation of Submicrometer Si/SiGe MODFETs , 2007, IEEE Transactions on Electron Devices.

[27]  R. J. Shul,et al.  GAN : PROCESSING, DEFECTS, AND DEVICES , 1999 .