Sparse Grids in a Nutshell

The technique of sparse grids allows to overcome the curse of dimensionality, which prevents the use of classical numerical discretization schemes in more than three or four dimensions, under suitable regularity assumptions. The approach is obtained from a multi-scale basis by a tensor product construction and subsequent truncation of the resulting multiresolution series expansion. This entry level article gives an introduction to sparse grids and the sparse grid combination technique.

[1]  A. Hochmuth,et al.  Tensor Products of Sobolev Spaces and Applications , 2007 .

[2]  Thomas Gerstner,et al.  Numerical integration using sparse grids , 2004, Numerical Algorithms.

[3]  G. Wahba Spline models for observational data , 1990 .

[4]  Hans-Joachim Bungartz,et al.  Pointwise Convergence Of The Combination Technique For Laplace's Equation , 1994 .

[5]  Pieter W. Hemker,et al.  Application of an Adaptive Sparse-Grid Technique to a Model Singular Perturbation Problem , 2000, Computing.

[6]  Hans-Joachim Bungartz,et al.  A Note on the Complexity of Solving Poisson's Equation for Spaces of Bounded Mixed Derivatives , 1999, J. Complex..

[7]  Jochen Garcke,et al.  A dimension adaptive sparse grid combination technique for machine learning , 2007 .

[8]  Thomas Gerstner,et al.  Dimension–Adaptive Tensor–Product Quadrature , 2003, Computing.

[9]  Jochen Garcke An Optimised Sparse Grid Combination Technique for Eigenproblems , 2007 .

[10]  M. Griebel,et al.  Optimized Tensor-Product Approximation Spaces , 2000 .

[11]  E. Groves A Dissertation ON , 1928 .

[12]  Michael Griebel,et al.  A combination technique for the solution of sparse grid problems , 1990, Forschungsberichte, TU Munich.

[13]  I. Mazin,et al.  Theory , 1934 .

[14]  Christian Feuersänger,et al.  Sparse grid methods for higher dimensional approximation , 2010 .

[15]  Benjamin Peherstorfer,et al.  Spatially adaptive sparse grids for high-dimensional data-driven problems , 2010, J. Complex..

[16]  Dirk Pflüger,et al.  Spatially Adaptive Sparse Grids for High-Dimensional Problems , 2010 .

[17]  U. Rüde,et al.  Extrapolation, combination, and sparse grid techniques for elliptic boundary value problems , 1992, Forschungsberichte, TU Munich.

[18]  F. Delvos d-Variate Boolean interpolation , 1982 .

[19]  H. Bungartz,et al.  Sparse grids , 2004, Acta Numerica.

[20]  Hans-Joachim Bungartz,et al.  Dünne Gitter und deren Anwendung bei der adaptiven Lösung der dreidimensionalen Poisson-Gleichung , 1992 .

[21]  Peter Deuflhard,et al.  Numerische Mathematik. I , 2002 .

[22]  C. Liem,et al.  The Splitting Extrapolation Method: A New Technique in Numerical Solution of Multidimensional Problems , 1995 .

[23]  Jean-Pierre Bourguignon,et al.  Mathematische Annalen , 1893 .

[24]  V. N. Temli︠a︡kov Approximation of periodic functions , 1993 .

[25]  G. Baszenski,et al.  Blending Approximations with Sine Functions , 1992 .

[26]  Jochen Garcke,et al.  Maschinelles Lernen durch Funktionsrekonstruktion mit verallgemeinerten dünnen Gittern , 2004 .

[27]  Aihui Zhou,et al.  Error analysis of the combination technique , 1999, Numerische Mathematik.

[28]  Harry Yserentant,et al.  Hierarchical bases , 1992 .

[29]  George G. Lorentz,et al.  Constructive Approximation , 1993, Grundlehren der mathematischen Wissenschaften.

[30]  J. Urry Complexity , 2006, Interpreting Art.

[31]  Hans-Joachim Bungartz,et al.  Acta Numerica 2004: Sparse grids , 2004 .

[32]  Jochen Garcke,et al.  Regression with the optimised combination technique , 2006, ICML.

[33]  S. Achatz,et al.  Higher Order Sparse Grid Methods for Elliptic Partial Differential Equations with Variable Coefficients , 2003, Computing.

[34]  Wolfgang Hackbusch,et al.  Parallel algorithms for partial differential equations - Proceedings of the sixth GAMM-seminar - Kiel, January 19-21, 1990 , 1991 .

[35]  Andreas Zeiser,et al.  Fast Matrix-Vector Multiplication in the Sparse-Grid Galerkin Method , 2011, J. Sci. Comput..

[36]  Vladimir N. Temlyakov,et al.  On Approximate Recovery of Functions with Bounded Mixed Derivative , 1993, J. Complex..

[37]  K. Roberts,et al.  Thesis , 2002 .

[38]  Michael Griebel,et al.  Adaptive sparse grid multilevel methods for elliptic PDEs based on finite differences , 1998, Computing.

[39]  G. Faber Über stetige Funktionen , 1908 .

[40]  V. N. Temli︠a︡kov Approximation of functions with bounded mixed derivative , 1989 .

[41]  Martin D. Buhmann,et al.  Boolean methods in interpolation and approximation , 1990, Acta Applicandae Mathematicae.

[42]  Jochen Garcke A Dimension Adaptive Combination Technique Using Localised Adaptation Criteria , 2009, HPSC.

[43]  Christoph Reisinger,et al.  Numerische Methoden für hochdimensionale parabolische Gleichungen am Beispiel von Optionspreisaufgaben , 2004 .

[44]  H. Yserentant On the multi-level splitting of finite element spaces , 1986 .

[45]  Jochen Garcke,et al.  Maschinelles Lernen durch Funktionsrekonstruktion mit verallgemeinerten dGittern , 2004 .

[46]  S. B. Stechkin Approximation of periodic functions , 1974 .

[47]  M. Hegland Adaptive sparse grids , 2003 .

[48]  P. Gács,et al.  Algorithms , 1992 .

[49]  Harry Yserentant,et al.  On the multi-level splitting of finite element spaces , 1986 .

[50]  Markus Hegland,et al.  The combination technique and some generalisations , 2007 .