Mori–Tanaka models for the thermal conductivity of composites with interfacial resistance and particle size distributions

Abstract A Mori–Tanaka scheme is presented for modeling the overall thermal conduction behavior of composites containing reinforcements with interfacial resistances and prescribed size distributions. The approach is used for studying composites reinforced by spherical particles with monomodal and bimodal log-normal volume fraction distributions. Relevant effects of the distribution functions on the overall conductivity of the composites are found for particle volume fraction distributions with spans in excess of unity.

[1]  Tungyang Chen,et al.  On diagonal and elastic symmetry of the approximate effective stiffness tensor of heterogeneous media , 1991 .

[2]  Helmut J. Böhm,et al.  Computational Simulation of Composites Reinforced by Planar Random Fibers: Homogenization and Localization by Unit Cell and Mean Field Approaches , 2006 .

[3]  Y. Benveniste,et al.  A new approach to the application of Mori-Tanaka's theory in composite materials , 1987 .

[4]  D. A. G. Bruggeman Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. III. Die elastischen Konstanten der quasiisotropen Mischkörper aus isotropen Substanzen , 1937 .

[5]  R. Hill A self-consistent mechanics of composite materials , 1965 .

[6]  D. Hasselman,et al.  Effective Thermal Conductivity of Composites with Interfacial Thermal Barrier Resistance , 1987 .

[7]  P. Ruch,et al.  Effect of diamond crystallographic orientation on dissolution and carbide formation in contact with liquid aluminium , 2006 .

[8]  C. Garcia-cordovilla,et al.  Liquid metal infiltration into ceramic particle preforms with bimodal size distributions , 2005 .

[9]  Rintoul,et al.  Effect of the interface on the properties of composite media. , 1995, Physical review letters.

[10]  H. Böhm,et al.  Heat conduction of a spheroidal inhomogeneity with imperfectly bonded interface , 2003 .

[11]  M. Ferrari Asymmetry and the high concentration limit of the Mori-Tanaka effective medium theory , 1991 .

[12]  D. A. G. Bruggeman Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen , 1935 .

[13]  S. Shtrikman,et al.  A Variational Approach to the Theory of the Effective Magnetic Permeability of Multiphase Materials , 1962 .

[14]  Touvia Miloh,et al.  The effective conductivity of composites with imperfect thermal contact at constituent interfaces , 1986 .

[15]  Y. Benveniste,et al.  Effective thermal conductivity of composites with a thermal contact resistance between the constituents: Nondilute case , 1987 .

[16]  Hatta Hiroshi,et al.  Equivalent inclusion method for steady state heat conduction in composites , 1986 .

[17]  Y. Benveniste On the effective thermal conductivity of multiphase composites , 1986 .

[18]  A. Mortensen,et al.  Thermal conductivity of Al–SiC composites with monomodal and bimodal particle size distribution , 2008 .

[19]  S. Torquato Random Heterogeneous Materials , 2002 .

[20]  Martin L. Dunn,et al.  The effective thermal conductivity of composites with coated reinforcement and the application to imperfect interfaces , 1993 .

[21]  Salvatore Torquato,et al.  Effective conductivity of hard-sphere dispersions , 1990 .