Stochastic model order reduction in randomly parametered linear dynamical systems

Abstract This study focuses on the development of reduced order models for stochastic analysis of complex large ordered linear dynamical systems with parametric uncertainties, with an aim to reduce the computational costs without compromising on the accuracy of the solution. Here, a twin approach to model order reduction is adopted. A reduction in the state space dimension is first achieved through system equivalent reduction expansion process which involves linear transformations that couple the effects of state space truncation in conjunction with normal mode approximations. These developments are subsequently extended to the stochastic case by projecting the uncertain parameters into the Hilbert subspace and obtaining a solution of the random eigenvalue problem using polynomial chaos expansion. Reduction in the stochastic dimension is achieved by retaining only the dominant stochastic modes in the basis space. The proposed developments enable building surrogate models for complex large ordered stochastically parametered dynamical systems which lead to accurate predictions at significantly reduced computational costs.

[1]  Athanasios A. Pantelous,et al.  Statistical Linearization of Nonlinear Structural Systems with Singular Matrices , 2016 .

[2]  Sunetra Sarkar,et al.  Precursors to flutter instability by an intermittency route: A model free approach , 2016 .

[3]  Yuan-Cheng Fung,et al.  An introduction to the theory of aeroelasticity , 1955 .

[4]  G. Stefanou The stochastic finite element method: Past, present and future , 2009 .

[5]  W. T. Martin,et al.  The Orthogonal Development of Non-Linear Functionals in Series of Fourier-Hermite Functionals , 1947 .

[6]  Michael Beitelschmidt,et al.  Comparison of model reduction techniques for large mechanical systems , 2008 .

[7]  Guang Lin,et al.  Uncertainty Quantification in Dynamic Simulations of Large-scale Power System Models using the High-Order Probabilistic Collocation Method on Sparse Grids , 2014 .

[8]  Armen Der Kiureghian,et al.  Comparison of finite element reliability methods , 2002 .

[9]  N. Wiener The Homogeneous Chaos , 1938 .

[10]  R. Ghanem,et al.  Polynomial Chaos in Stochastic Finite Elements , 1990 .

[11]  Jun S. Liu,et al.  Monte Carlo strategies in scientific computing , 2001 .

[12]  Erich Novak,et al.  High dimensional polynomial interpolation on sparse grids , 2000, Adv. Comput. Math..

[13]  J. Scheidt,et al.  Random Eigenvalue Problems , 1983 .

[14]  Vineeth Nair,et al.  Multi-fractality in aeroelastic response as a precursor to flutter , 2017 .

[15]  C. S. Manohar,et al.  An improved response surface method for the determination of failure probability and importance measures , 2004 .

[16]  R. Ghanem,et al.  Stochastic Finite Elements: A Spectral Approach , 1990 .

[17]  G. Schuëller,et al.  Random eigenvalue problems for large systems , 2002 .

[18]  Timothy Hasselman Quantification of Uncertainty in Structural Dynamic Models , 2001 .

[19]  R. Ghanem,et al.  An invariant subspace‐based approach to the random eigenvalue problem of systems with clustered spectrum , 2012 .

[20]  Jeroen A. S. Witteveen,et al.  Modeling Arbitrary Uncertainties Using Gram-Schmidt Polynomial Chaos , 2006 .

[21]  Ioannis P. Mitseas,et al.  Nonlinear MDOF System Survival Probability Determination Subject to Evolutionary Stochastic Excitation , 2016 .

[22]  Fabio Nobile,et al.  A Sparse Grid Stochastic Collocation Method for Partial Differential Equations with Random Input Data , 2008, SIAM J. Numer. Anal..

[23]  Robert H. Scanlan,et al.  A Modern Course in Aeroelasticity , 1981, Solid Mechanics and Its Applications.

[24]  Roger G. Ghanem,et al.  Physical Systems with Random Uncertainties: Chaos Representations with Arbitrary Probability Measure , 2005, SIAM J. Sci. Comput..

[25]  Armen Der Kiureghian,et al.  The stochastic finite element method in structural reliability , 1988 .

[26]  Dongbin Xiu,et al.  The Wiener-Askey Polynomial Chaos for Stochastic Differential Equations , 2002, SIAM J. Sci. Comput..

[27]  C. S. Manohar,et al.  Progress in structural dynamics with stochastic parameter variations: 1987-1998 , 1999 .

[28]  Pol D. Spanos,et al.  Nonlinear MDOF system stochastic response determination via a dimension reduction approach , 2013 .

[29]  R. Suresh,et al.  Stochastic model order reduction in uncertainty quantification of composite structures , 2015 .

[30]  Leonard Meirovitch,et al.  Computational Methods in Structural Dynamics , 1980 .

[31]  Gene H. Golub,et al.  Matrix computations , 1983 .

[32]  Athanasios A. Pantelous,et al.  Linear Random Vibration of Structural Systems with Singular Matrices , 2016 .

[33]  Thomas Weiland,et al.  COMPARISON OF EIGENVALUE SOLVERS FOR LARGE SPARSE MATRIX PENCILS , 2012 .

[34]  R. Caflisch,et al.  Quasi-Monte Carlo integration , 1995 .

[35]  Jeroen A. S. Witteveen,et al.  Modeling physical uncertainties in dynamic stall induced fluid-structure interaction of turbine blades using arbitrary polynomial chaos , 2007 .

[36]  R. Clough,et al.  Dynamics Of Structures , 1975 .

[37]  The use of cross-section warping functions in composite rotor blade analysis , 1992 .

[38]  George E. Karniadakis,et al.  Beyond Wiener–Askey Expansions: Handling Arbitrary PDFs , 2006, J. Sci. Comput..

[39]  Roland Pulch,et al.  Stochastic Galerkin methods and model order reduction for linear dynamical systems , 2013 .

[40]  R. Ghanem,et al.  Probabilistic equivalence and stochastic model reduction in multiscale analysis , 2008 .

[41]  R. Guyan Reduction of stiffness and mass matrices , 1965 .

[42]  Debraj Ghosh,et al.  Application of the random eigenvalue problem in forced response analysis of a linear stochastic structure , 2013 .

[43]  Markus Holtz,et al.  Sparse Grid Quadrature in High Dimensions with Applications in Finance and Insurance , 2010, Lecture Notes in Computational Science and Engineering.

[44]  R. Ibrahim Structural Dynamics with Parameter Uncertainties , 1987 .

[45]  George Em Karniadakis,et al.  Generalized polynomial chaos and random oscillators , 2004 .

[46]  Thomas Gerstner,et al.  Numerical integration using sparse grids , 2004, Numerical Algorithms.

[47]  Sunetra Sarkar,et al.  Reduced Order Models in Analysis of Stochastically Parametered Linear Dynamical Systems , 2016 .