Relative ellipsoid zone reflectivity and its association with disease severity in age-related macular degeneration: a MACUSTAR study report
暂无分享,去创建一个
A. Charil | J. Brazier | T. Peto | E. Souied | T. Peters | C. Hoyng | A. Tufail | D. Rowen | M. Pâques | M. Varano | M. Parravano | H. Dunbar | U. Luhmann | J. Terheyden | G. Montesano | F. Holz | D. Crabb | R. Finger | G. Staurenghi | S. Schmitz-Valckenberg | M. Schmid | J. Cunha-Vaz | F. Bandello | L. Altay | Z. Mulyukov | C. Boon | S. Penas | E. Fletcher | A. Binns | M. Sassmannshausen | R. Atia | J. Siedlecki | J. Sahel | L. Kühlewein | M. Pfau | S. Thiele | S. Leal | C. Sánchez | L. Wintergerst | H. Agostini | J. Krätzschmar | M. Gutfleisch | Â. Carneiro | A. Lüning | T. Butt | L. Vieweg | C. Dahlke | M. Pfau | M. Berger | A. Kilani | C. Bouchet | C. Behning | M. Böttger | D. Taylor | G. Rubin | N. Zakaria | C. Carapezzi | R. Coimbra | C. Martinho | A. Skelly | L. Stöhr | Ben Isselmann | H. Floyd | R. Hogg | Y. Lechanteur | I. Marques | M. Cozzi | B. Parodi | L. de Sisternes | M. Belmouhand | H. L. R. F. P. G. C. M. M. A. C. J. F. M. C. J. E. T. Agostini Altay Atia Bandello Basile Behning Be | P. G. Basile | J. Carlton | C. Francisco | M. Larsen | S. Poor | S. Priglinger | O. Sander | H. Schrinner-Fenske | R. Silva | L. Wintergerst | A. Wolf | J. Krätzschmar | P. Basile
[1] R. Podolsky,et al. Functional Changes Within the Rod Inner Segment Ellipsoid in Wildtype Mice: An Optical Coherence Tomography and Electron Microscopy Study , 2022, Investigative ophthalmology & visual science.
[2] C. Luu,et al. Natural history of the relative ellipsoid zone reflectivity in age-related macular degeneration. , 2022, Ophthalmology. Retina.
[3] U. Luhmann,et al. Intersession Repeatability of Structural Biomarkers in Early and Intermediate Age-Related Macular Degeneration: A MACUSTAR Study Report , 2022, Translational vision science & technology.
[4] R. Guymer,et al. Reticular pseudodrusen: A critical phenotype in age-related macular degeneration , 2021, Progress in Retinal and Eye Research.
[5] Sonali Nashine. Potential Therapeutic Candidates for Age-Related Macular Degeneration (AMD) , 2021, Cells.
[6] G. Querques,et al. Photoreceptor alteration in intermediate age-related macular degeneration , 2020, Scientific Reports.
[7] Robyn H. Guymer,et al. Validation of an Automated Quantification of Relative Ellipsoid Zone Reflectivity on Spectral Domain-Optical Coherence Tomography Images , 2020, Translational vision science & technology.
[8] D. Rubin,et al. Progression of Photoreceptor Degeneration in Geographic Atrophy Secondary to Age-related Macular Degeneration. , 2020, JAMA ophthalmology.
[9] C. Wojek,et al. Clinical study protocol for a low-interventional study in intermediate age-related macular degeneration developing novel clinical endpoints for interventional clinical trials with a regulatory and patient access intention—MACUSTAR , 2020, Trials.
[10] C. Curcio,et al. SUBRETINAL DRUSENOID DEPOSIT IN AGE-RELATED MACULAR DEGENERATION: Histologic Insights Into Initiation, Progression to Atrophy, and Imaging. , 2020, Retina.
[11] P. Rosenfeld,et al. Structural OCT Signs Suggestive of Subclinical Nonexudative Macular Neovascularization in Eyes with Large Drusen. , 2019, Ophthalmology.
[12] Priyatham S. Mettu,et al. Elamipretide, a Mitochondrial-Targeted Drug, for the Treatment of Vision Loss in Dry AMD with High Risk Drusen: Results of the Phase 1 ReCLAIM Study , 2019 .
[13] F. Holz,et al. MACUSTAR: Entwicklung und klinische Validierung von funktionellen, strukturellen und patientenberichteten Endpunkten bei intermediärer altersabhängiger Makuladegeneration , 2019, Der Ophthalmologe.
[14] P. Rosenfeld,et al. Predictive Value of the OCT Double-Layer Sign for Identifying Subclinical Neovascularization in Age-Related Macular Degeneration. , 2019, Ophthalmology. Retina.
[15] L. Kuehlewein,et al. [Development and validation of novel clinical endpoints in intermediate age-related macular degeneration in MACUSTAR]. , 2019, Der Ophthalmologe : Zeitschrift der Deutschen Ophthalmologischen Gesellschaft.
[16] G. Staurenghi,et al. SCOTOPIC AND FAST MESOPIC MICROPERIMETRY IN EYES WITH DRUSEN AND RETICULAR PSEUDODRUSEN. , 2019, Retina.
[17] G. Rubin,et al. MACUSTAR: Development and Clinical Validation of Functional, Structural, and Patient-Reported Endpoints in Intermediate Age-Related Macular Degeneration , 2018, Ophthalmologica.
[18] C. Curcio,et al. HISTOLOGY OF GEOGRAPHIC ATROPHY SECONDARY TO AGE-RELATED MACULAR DEGENERATION , 2018, Retina.
[19] K Bailey Freund,et al. OPTICAL COHERENCE TOMOGRAPHY AND HISTOLOGY OF AGE-RELATED MACULAR DEGENERATION SUPPORT MITOCHONDRIA AS REFLECTIVITY SOURCES , 2017, Retina.
[20] George Papandreou,et al. Rethinking Atrous Convolution for Semantic Image Segmentation , 2017, ArXiv.
[21] Zhichao Wu,et al. Quantitative Analysis of the Ellipsoid Zone Intensity in Phenotypic Variations of Intermediate Age-Related Macular Degeneration. , 2017, Investigative ophthalmology & visual science.
[22] F. Holz,et al. Prevalence, Natural Course, and Prognostic Role of Refractile Drusen in Age-Related Macular Degeneration. , 2017, Investigative ophthalmology & visual science.
[23] Chandrakumar Balaratnasingam,et al. A Perspective on the Nature and Frequency of Pigment Epithelial Detachments. , 2016, American journal of ophthalmology.
[24] E. Souied,et al. Pilot evaluation of short-term changes in macular pigment and retinal sensitivity in different phenotypes of early age-related macular degeneration after carotenoid supplementation , 2016, British Journal of Ophthalmology.
[25] Douglas H. Ross,et al. RefMoB, a Reflectivity Feature Model-Based Automated Method for Measuring Four Outer Retinal Hyperreflective Bands in Optical Coherence Tomography. , 2015, Investigative ophthalmology & visual science.
[26] Auinash Kalsotra,et al. Impaired Mitochondrial Energy Production Causes Light-Induced Photoreceptor Degeneration Independent of Oxidative Stress , 2015, PLoS biology.
[27] R. Fimmers,et al. Scotopic and Photopic Microperimetry in Patients With Reticular Drusen and Age-Related Macular Degeneration. , 2015, JAMA ophthalmology.
[28] D. Ferrington,et al. Investigating Mitochondria as a Target for Treating Age-Related Macular Degeneration , 2015, The Journal of Neuroscience.
[29] F. Holz,et al. Reticular drusen in eyes with high-risk characteristics for progression to late-stage age-related macular degeneration , 2015, British Journal of Ophthalmology.
[30] S. Sadda,et al. Proposed lexicon for anatomic landmarks in normal posterior segment spectral-domain optical coherence tomography: the IN•OCT consensus. , 2014, Ophthalmology.
[31] E. Souied,et al. HYPERREFLECTIVE PYRAMIDAL STRUCTURES ON OPTICAL COHERENCE TOMOGRAPHY IN GEOGRAPHIC ATROPHY AREAS , 2014, Retina.
[32] L. Ayton,et al. Reticular pseudodrusen: a risk factor for geographic atrophy in fellow eyes of individuals with unilateral choroidal neovascularization. , 2014, Ophthalmology.
[33] Lauren N Ayton,et al. Relationship between the second reflective band on optical coherence tomography and multifocal electroretinography in age-related macular degeneration. , 2013, Investigative ophthalmology & visual science.
[34] Usha Chakravarthy,et al. Clinical classification of age-related macular degeneration. , 2013, Ophthalmology.
[35] Adam Boretsky,et al. In vivo imaging of photoreceptor disruption associated with age‐related macular degeneration: A pilot study , 2012, Lasers in surgery and medicine.
[36] Austin Roorda,et al. Revealing Henle's fiber layer using spectral domain optical coherence tomography. , 2011, Investigative ophthalmology & visual science.
[37] L. Yannuzzi,et al. ACQUIRED VITELLIFORM LESIONS: Correlation of Clinical Findings and Multiple Imaging Analyses , 2011, Retina.
[38] L. Yannuzzi,et al. Adult-Onset Vitelliform Detachment: Correlation of Clinical Findings and Multiple Imaging Analyses , 2010 .
[39] C. Curcio,et al. Reticular pseudodrusen are subretinal drusenoid deposits. , 2010, Ophthalmology.
[40] Matthew D. Davis,et al. The Age-Related Eye Disease Study Severity Scale for Age-Related Macular Degeneration , 2015 .
[41] C. Curcio,et al. Photoreceptor inner segments in monkey and human retina: Mitochondrial density, optics, and regional variation , 2002, Visual Neuroscience.
[42] Jennifer I. Lim,et al. A randomized, placebo-controlled, clinical trial of high-dose supplementation with vitamins C and E, beta carotene, and zinc for age-related macular degeneration and vision loss: AREDS report no. 8. , 2001, Archives of ophthalmology.
[43] C. Baird,et al. The pilot study. , 2000, Orthopedic nursing.
[44] A. Cideciyan,et al. Relation of optical coherence tomography to microanatomy in normal and rd chickens. , 1998, Investigative ophthalmology & visual science.
[45] G. Ripandelli,et al. Optical coherence tomography. , 1998, Seminars in ophthalmology.
[46] C. Curcio,et al. Photoreceptor loss in age-related macular degeneration. , 1996, Investigative ophthalmology & visual science.
[47] C. Lane. Stereoscopic Atlas of Macular Diseases: Diagnosis and Treatment , 1988 .
[48] J. Fleiss,et al. Intraclass correlations: uses in assessing rater reliability. , 1979, Psychological bulletin.
[49] Bertha A. Kliex. Stereoscopic Atlas of Macular Diseases—Diagnosis and Treatment, 2nd ed , 1977 .