Multiresolution properties of the wavelet Galerkin operator
暂无分享,去创建一个
[1] A. Cohen. Ondelettes, analyses multirésolutions et filtres miroirs en quadrature , 1990 .
[2] Ramesh A. Gopinath,et al. Wavelet-Galerkin approximation of linear translation invariant operators , 1991, [Proceedings] ICASSP 91: 1991 International Conference on Acoustics, Speech, and Signal Processing.
[3] G. Beylkin. On the representation of operators in bases of compactly supported wavelets , 1992 .
[4] I. Daubechies. Orthonormal bases of compactly supported wavelets , 1988 .
[5] R. Coifman,et al. Fast wavelet transforms and numerical algorithms I , 1991 .
[6] D. Pollen,et al. _{}(2,[,1/]) for a subfield of , 1990 .
[7] A. Haar. Zur Theorie der orthogonalen Funktionensysteme , 1910 .
[8] William L. Briggs,et al. A multigrid tutorial , 1987 .
[9] W. Lawton. Tight frames of compactly supported affine wavelets , 1990 .
[10] Stéphane Mallat,et al. A Theory for Multiresolution Signal Decomposition: The Wavelet Representation , 1989, IEEE Trans. Pattern Anal. Mach. Intell..
[11] S. Mallat. Multiresolution approximations and wavelet orthonormal bases of L^2(R) , 1989 .
[12] W. Lawton. Necessary and sufficient conditions for constructing orthonormal wavelet bases , 1991 .
[13] Mark J. T. Smith,et al. Exact reconstruction techniques for tree-structured subband coders , 1986, IEEE Trans. Acoust. Speech Signal Process..
[14] Truong Q. Nguyen,et al. Improved technique for design of perfect reconstruction FIR QMF banks with lossless polyphase matrices , 1989, IEEE Trans. Acoust. Speech Signal Process..
[15] E. Stein,et al. Introduction to Fourier Analysis on Euclidean Spaces. , 1971 .
[16] Martin Vetterli,et al. Perfect reconstruction FIR filter banks: some properties and factorizations , 1989, IEEE Trans. Acoust. Speech Signal Process..
[17] Séminaire sur les équations aux dérivées partielles,et al. Séminaire equations aux dérivées partielles , 1988 .
[18] W. Rudin. Real and complex analysis , 1968 .