Multiresolution properties of the wavelet Galerkin operator

This paper extends recent results by the author [J. Math. Phys. 31, 1898 (1990), J. Math. Phys. 32, 57 (1991)] that show a scaling parameter sequence h yields an orthonormal wavelet basis for L2(R) if and only if an associated operator Sh has eigenvalue 1 with multiplicity 1. The operator transforms a sequence a by Sh(a)(k)=2Σm,n∼(h(m))h(n)a(2k+m−n). A correspondence is derived between Sh and Galerkin projection operators related to the multiresolution analysis defined by the orthonormal wavelet basis. The spectrum of Sh is characterized in terms of the Fourier modulus of the (unique) scaling function φ that satisfies φ(x)=2Σnh(n)φ(2x−n). This characterization yields several results including a direct, alternate proof that the eigenvalue 1 of Sh has multiplicity 1.

[1]  A. Cohen Ondelettes, analyses multirésolutions et filtres miroirs en quadrature , 1990 .

[2]  Ramesh A. Gopinath,et al.  Wavelet-Galerkin approximation of linear translation invariant operators , 1991, [Proceedings] ICASSP 91: 1991 International Conference on Acoustics, Speech, and Signal Processing.

[3]  G. Beylkin On the representation of operators in bases of compactly supported wavelets , 1992 .

[4]  I. Daubechies Orthonormal bases of compactly supported wavelets , 1988 .

[5]  R. Coifman,et al.  Fast wavelet transforms and numerical algorithms I , 1991 .

[6]  D. Pollen,et al.  _{}(2,[,1/]) for a subfield of , 1990 .

[7]  A. Haar Zur Theorie der orthogonalen Funktionensysteme , 1910 .

[8]  William L. Briggs,et al.  A multigrid tutorial , 1987 .

[9]  W. Lawton Tight frames of compactly supported affine wavelets , 1990 .

[10]  Stéphane Mallat,et al.  A Theory for Multiresolution Signal Decomposition: The Wavelet Representation , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[11]  S. Mallat Multiresolution approximations and wavelet orthonormal bases of L^2(R) , 1989 .

[12]  W. Lawton Necessary and sufficient conditions for constructing orthonormal wavelet bases , 1991 .

[13]  Mark J. T. Smith,et al.  Exact reconstruction techniques for tree-structured subband coders , 1986, IEEE Trans. Acoust. Speech Signal Process..

[14]  Truong Q. Nguyen,et al.  Improved technique for design of perfect reconstruction FIR QMF banks with lossless polyphase matrices , 1989, IEEE Trans. Acoust. Speech Signal Process..

[15]  E. Stein,et al.  Introduction to Fourier Analysis on Euclidean Spaces. , 1971 .

[16]  Martin Vetterli,et al.  Perfect reconstruction FIR filter banks: some properties and factorizations , 1989, IEEE Trans. Acoust. Speech Signal Process..

[17]  Séminaire sur les équations aux dérivées partielles,et al.  Séminaire equations aux dérivées partielles , 1988 .

[18]  W. Rudin Real and complex analysis , 1968 .