Arrow’s theorem and max-star transitivity

In the literature on social choice with fuzzy preferences, a central question is how to represent the transitivity of a fuzzy binary relation. Arguably the most general way of doing this is to assume a form of transitivity called max-star transitivity. The star operator in this formulation is commonly taken to be a triangular norm. The familiar max- min transitivity condition is a member of this family, but there are infinitely many others. Restricting attention to fuzzy aggregation rules that satisfy counterparts of unanimity and independence of irrelevant alternatives, we characterise the set of triangular norms that permit preference aggregation to be non-dictatorial. This set contains all and only those norms that contain a zero divisor.

[1]  Christian List,et al.  The aggregation of propositional attitudes: towards a general theory , 2008 .

[2]  Conal Duddy,et al.  Manipulating an aggregation rule under ordinally fuzzy preferences , 2010, Soc. Choice Welf..

[3]  J. García-Lapresta,et al.  Majority decisions based on difference of votes , 2001 .

[4]  Nicolas Gabriel Andjiga,et al.  Fuzzy strict preference and social choice , 2005, Fuzzy Sets Syst..

[5]  S. Ovchinnikov STRUCTURE OF FUZZY BINARY RELATIONS , 1981 .

[6]  K. Basu Fuzzy revealed preference theory , 1984 .

[7]  P. Pattanaik,et al.  Exact choice and fuzzy preferences , 1986 .

[8]  Antoine Billot,et al.  Economic Theory of Fuzzy Equilibria , 1992 .

[9]  M. Dasgupta,et al.  Factoring fuzzy transitivity , 2001, Fuzzy Sets Syst..

[10]  Gregory S. Richardson,et al.  The structure of fuzzy preferences: Social choice implications , 1998 .

[11]  Juan Perote-Peña,et al.  Non-manipulable Social Welfare Functions when Preferences are Fuzzy , 2009, J. Log. Comput..

[12]  Christian Eitzinger,et al.  Triangular Norms , 2001, Künstliche Intell..

[13]  Sergei Ovchinnikov,et al.  On fuzzy strict preference, indifference, and incomparability relations , 1992 .

[14]  S. Orlovsky Decision-making with a fuzzy preference relation , 1978 .

[15]  Bruno Leclerc,et al.  Aggregation of fuzzy preferences: A theoretic Arrow-like approach , 1991 .

[16]  Conal Duddy,et al.  Many-valued judgment aggregation: Characterizing the possibility/impossibility boundary , 2013, J. Econ. Theory.

[17]  A. Sen,et al.  Interpersonal Aggregation and Partial Comparability , 1970 .

[18]  L. A. Goodman,et al.  Social Choice and Individual Values , 1951 .

[19]  R. Deb,et al.  Soft sets: an ordinal formulation of vagueness with some applications to the theory of choice , 1992 .

[20]  Ashley Piggins,et al.  Strategy-proof fuzzy aggregation rules , 2007 .

[21]  C. R. Barrett,et al.  Rationality and aggregation of preferences in an ordinally fuzzy framework , 1992 .

[22]  C. R. Barrett,et al.  On the structure of fuzzy social welfare functions , 1986 .

[23]  Claude Ponsard,et al.  Some dissenting views on the transitivity of individual preference , 1990 .

[24]  Bruno Leclerc,et al.  Efficient and binary consensus functions on transitively valued relations , 1984 .

[25]  I. Georgescu Fuzzy choice functions , 2007 .

[26]  S. Ovchinnikov,et al.  On strict preference relations , 1991 .

[27]  Francesc Esteva,et al.  Review of Triangular norms by E. P. Klement, R. Mesiar and E. Pap. Kluwer Academic Publishers , 2003 .

[28]  Ashley Piggins,et al.  Instances of Indeterminacy , 2007 .

[29]  M. Hees,et al.  Economics, Rational Choice and Normative Philosophy , 2008 .

[30]  J. Goguen L-fuzzy sets , 1967 .

[31]  Neelam Jain Transitivity of fuzzy relations and rational choice , 1990 .

[32]  Asis Kumar Banerjee,et al.  Fuzzy preferences and Arrow-type problems in social choice , 1994 .

[33]  Barrett Richard,et al.  Chapter Twenty - Social Choice with Fuzzy Preferences , 2011 .

[34]  William A. Barnett,et al.  Social Choice, Welfare, and Ethics , 2006 .

[35]  Asis Bannerjee,et al.  Rational choice under fuzzy preferences: the Orlovsky choice function , 1993 .

[36]  R. Deb,et al.  Transitivity and fuzzy preferences , 1996 .

[37]  S. Ovchinnikov Social choice and Lukasiewicz logic , 1991 .

[38]  Fang-Fang Tang,et al.  Fuzzy Preferences and Social Choice , 1994 .