All-angle negative refraction for surface plasmon waves using a metal-dielectric-metal structure.

We show that a metal-dielectric-metal structure can function as a negative refraction lens for surface plasmon waves on a metal surface. The structure is uniform with respect to a plane of incidence and operates at the optical frequency range. Using three-dimensional finite-difference time-domain simulations, we demonstrate the imaging operation of the structure with realistic material parameters including dispersions and losses. Our design should facilitate the demonstration of many novel effects associated with negative refraction on chip at optical wavelength ranges. In addition, this structure provides a new way of controlling the propagation of surface plasmons, which are important for nanoscale manipulation of optical waves.

[1]  Stewart,et al.  Extremely low frequency plasmons in metallic mesostructures. , 1996, Physical review letters.

[2]  Peer Fischer,et al.  Negative refraction at optical frequencies in nonmagnetic two-component molecular media. , 2005, Physical review letters.

[3]  Mihai Ibanescu,et al.  Surface-plasmon-assisted guiding of broadband slow and subwavelength light in air. , 2005, Physical review letters.

[4]  Steven G. Johnson,et al.  All-angle negative refraction without negative effective index , 2002 .

[5]  M. Rosenbluth,et al.  Limitations on subdiffraction imaging with a negative refractive index slab , 2002, cond-mat/0206568.

[6]  Willie J Padilla,et al.  Terahertz Magnetic Response from Artificial Materials , 2004, Science.

[7]  R. Shelby,et al.  Experimental Verification of a Negative Index of Refraction , 2001, Science.

[8]  V. Veselago The Electrodynamics of Substances with Simultaneously Negative Values of ∊ and μ , 1968 .

[9]  R. Ziolkowski,et al.  Wave propagation in media having negative permittivity and permeability. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[10]  Sailing He,et al.  Finite-size effects of a left-handed material slab on the image quality. , 2004, Physical review letters.

[11]  John B. Pendry,et al.  Removal of absorption and increase in resolution in a near-field lens via optical gain , 2003 .

[12]  K. Yee Numerical solution of initial boundary value problems involving maxwell's equations in isotropic media , 1966 .

[13]  Masaya Notomi,et al.  Theory of light propagation in strongly modulated photonic crystals: Refractionlike behavior in the vicinity of the photonic band gap , 2000 .

[14]  S. Anantha Ramakrishna,et al.  Near-field lenses in two dimensions , 2002 .

[15]  S. Fan,et al.  Omnidirectional resonance in a metal-dielectric-metal geometry , 2004 .

[16]  E. Economou Surface Plasmons in Thin Films , 1969 .

[17]  M. Majewski,et al.  Optical properties of metallic films for vertical-cavity optoelectronic devices. , 1998, Applied optics.

[18]  D. Lynch,et al.  Handbook of Optical Constants of Solids , 1985 .

[19]  Melinda Piket-May,et al.  9 – Computational Electromagnetics: The Finite-Difference Time-Domain Method , 2005 .

[20]  M. Wegener,et al.  Magnetic Response of Metamaterials at 100 Terahertz , 2004, Science.

[21]  C. Soukoulis,et al.  Subwavelength resolution in a two-dimensional photonic-crystal-based superlens. , 2003, Physical review letters.

[22]  Vincent Laude,et al.  Negative group velocities in metal-film optical waveguides , 1997 .

[23]  Allen Taflove,et al.  Computational Electrodynamics the Finite-Difference Time-Domain Method , 1995 .

[24]  Andrew G. Glen,et al.  APPL , 2001 .

[25]  Willie J Padilla,et al.  Composite medium with simultaneously negative permeability and permittivity , 2000, Physical review letters.

[26]  M. Qiu,et al.  Negative refraction at infrared wavelengths in a two-dimensional photonic crystal. , 2004, Physical review letters.

[27]  C M Soukoulis,et al.  Effective medium theory of left-handed materials. , 2004, Physical review letters.

[28]  W. Barnes,et al.  Surface plasmon subwavelength optics , 2003, Nature.

[29]  Michael Scalora,et al.  Bright and dark gap solitons in a negative index Fabry-Pérot etalon. , 2004, Physical review letters.

[30]  Steven G. Johnson,et al.  Subwavelength imaging in photonic crystals , 2003 .

[31]  J. Pendry,et al.  Negative refraction makes a perfect lens , 2000, Physical review letters.

[32]  J. Pendry A Chiral Route to Negative Refraction , 2004, Science.

[33]  N. Fang,et al.  Sub–Diffraction-Limited Optical Imaging with a Silver Superlens , 2005, Science.

[34]  Yuri S Kivshar,et al.  Complete band gaps in one-dimensional left-handed periodic structures. , 2005, Physical review letters.

[35]  Steven A. Cummer,et al.  Simulated causal subwavelength focusing by a negative refractive index slab , 2003 .

[36]  J. Pendry,et al.  Magnetism from conductors and enhanced nonlinear phenomena , 1999 .

[37]  V. Podolskiy,et al.  Strongly anisotropic waveguide as a nonmagnetic left-handed system , 2005 .

[38]  Jean-Pierre Berenger,et al.  A perfectly matched layer for the absorption of electromagnetic waves , 1994 .