Broadband (0–5 Hz) Fully Deterministic 3D Ground‐Motion Simulations of a Magnitude 7.0 Hayward Fault Earthquake: Comparison with Empirical Ground‐Motion Models and 3D Path and Site Effects from Source Normalized Intensities

[1]  Robin K. McGuire,et al.  The character of high-frequency strong ground motion , 1981 .

[2]  M. Bouchon A simple method to calculate Green's functions for elastic layered media , 1981 .

[3]  T. Toppozada,et al.  Preparation of isoseismal maps and summaries of reported effects for pre-1900 California earthquakes , 1981 .

[4]  D. Boore Stochastic simulation of high-frequency ground motions based on seismological models of the radiated spectra , 1983 .

[5]  J. Virieux P-SV wave propagation in heterogeneous media: Velocity‐stress finite‐difference method , 1986 .

[6]  A. Levander Fourth-order finite-difference P-SV seismograms , 1988 .

[7]  Donald V. Helmberger,et al.  Elastic finite-difference modeling of the 1971 San Fernando , 1988 .

[8]  Kim B. Olsen,et al.  Three-Dimensional Simulation of a Magnitude 7.75 Earthquake on the San Andreas Fault , 1995, Science.

[9]  Hiroshi Kawase,et al.  The Cause of the Damage Belt in Kobe: “The Basin-Edge Effect,” Constructive Interference of the Direct S-Wave with the Basin-Induced Diffracted/Rayleigh Waves , 1996 .

[10]  P. Segall,et al.  Slip in the 1868 Hayward earthquake from the analysis of historical triangulation data , 1996 .

[11]  Robert W. Graves,et al.  Simulating seismic wave propagation in 3D elastic media using staggered-grid finite differences , 1996, Bulletin of the Seismological Society of America.

[12]  David R. O'Hallaron,et al.  Large-scale simulation of elastic wave propagation in heterogeneous media on parallel computers , 1998 .

[13]  Robert W. Graves,et al.  Ground-motion amplification in the Santa Monica area: Effects of shallow basin-edge structure , 1998, Bulletin of the Seismological Society of America.

[14]  Hiroshi Takenaka,et al.  Parallel 3-D pseudospectral simulation of seismic wave propagation , 1998 .

[15]  James N. Brune,et al.  Probabilistic Seismic Hazard Analysis without the Ergodic Assumption , 1999 .

[16]  W. Bakun Seismic activity of the San Francisco Bay region , 1999, Bulletin of the Seismological Society of America.

[17]  D. Komatitsch,et al.  Introduction to the spectral element method for three-dimensional seismic wave propagation , 1999 .

[18]  Kojiro Irikura,et al.  Simulation of Near-Fault Strong-Ground Motion Using Hybrid Green's Functions , 2000 .

[19]  Kim B. Olsen,et al.  Site Amplification in the Los Angeles Basin from Three-Dimensional Modeling of Ground Motion , 2000 .

[20]  Luis Rivera,et al.  A note on the dynamic and static displacements from a point source in multilayered media , 2002 .

[21]  D. P. Schwartz,et al.  A Record of Large Earthquakes on the Southern Hayward Fault for the Past 500 Years , 2002 .

[22]  Felix Waldhauser,et al.  Fault structure and mechanics of the Hayward Fault, California, from double-difference earthquake locations , 2002 .

[23]  David M. Boore,et al.  Simulation of Ground Motion Using the Stochastic Method , 2003 .

[24]  Stephen H. Hartzell,et al.  Prediction of nonlinear soil effects , 2004 .

[25]  P. Maechling,et al.  Strong shaking in Los Angeles expected from southern San Andreas earthquake , 2006 .

[26]  Daniel Lavallée,et al.  Hysteretic and Dilatant Behavior of Cohesionless Soils and Their Effects on Nonlinear Site Response: Field Data Observations and Modeling , 2005 .

[27]  N. Abrahamson,et al.  Orientation-Independent Measures of Ground Motion , 2006 .

[28]  M. Dumbser,et al.  An arbitrary high-order discontinuous Galerkin method for elastic waves on unstructured meshes — II. The three-dimensional isotropic case , 2006 .

[29]  M. Dumbser,et al.  An arbitrary high-order discontinuous Galerkin method for elastic waves on unstructured meshes - I. The two-dimensional isotropic case with external source terms , 2006 .

[30]  T. Tu,et al.  From Mesh Generation to Scientific Visualization: An End-to-End Approach to Parallel Supercomputing , 2006, ACM/IEEE SC 2006 Conference (SC'06).

[31]  Stefan Nilsson,et al.  Stable Difference Approximations for the Elastic Wave Equation in Second Order Formulation , 2007, SIAM J. Numer. Anal..

[32]  N. Anders Petersson,et al.  Ground-Motion Modeling of the 1906 San Francisco Earthquake, Part II: Ground-Motion Estimates for the 1906 Earthquake and Scenario Events , 2007 .

[33]  A. Michael,et al.  Seismic Velocity Structure and Seismotectonics of the Eastern San Francisco Bay Region, California , 2007 .

[34]  N. Anders Petersson,et al.  Broadband Waveform Modeling of Moderate Earthquakes in the San Francisco Bay Area and Preliminary Assessment of the USGS 3D Seismic Velocity Model , 2008 .

[35]  Howard Bundock,et al.  Modified Mercalli Intensity Maps for the 1868 Hayward Earthquake Plotted in ShakeMap Format , 2008 .

[36]  Jonathan P. Stewart,et al.  Broadband simulations for Mw 7.8 southern San Andreas earthquakes: Ground motion sensitivity to rupture speed , 2008 .

[37]  F. Waldhauser,et al.  Large-scale relocation of two decades of Northern California seismicity using cross-correlation and double-difference methods , 2008 .

[38]  S. Hartzell,et al.  Simulated ground motion in Santa Clara Valley, California, and vicinity from M≥6.7 scenario earthquakes , 2008 .

[39]  Kim B. Olsen,et al.  Model for Basin Effects on Long-Period Response Spectra in Southern California , 2008 .

[40]  N. Anders Petersson,et al.  Ground-motion modeling of Hayward fault scenario earthquakes, part II: Simulation of long-period and broadband ground motions , 2009 .

[41]  David Carver,et al.  Sedimentary Basin Effects in Seattle, Washington: Ground-Motion Observations and 3D Simulations , 2009 .

[42]  Carl Tape,et al.  Adjoint Tomography of the Southern California Crust , 2009, Science.

[43]  Philip J. Maechling,et al.  ShakeOut‐D: Ground motion estimates using an ensemble of large earthquakes on the southern San Andreas fault with spontaneous rupture propagation , 2009 .

[44]  N. Anders Petersson,et al.  Stable and Efficient Modeling of Anelastic Attenuation in Seismic Wave Propagation , 2010 .

[45]  Julian J. Bommer,et al.  The Variability of Ground-Motion Prediction Models and Its Components , 2010 .

[46]  A. Pitarka,et al.  Broadband Ground-Motion Simulation Using a Hybrid Approach , 2010 .

[47]  T. Guilderson,et al.  Evidence for a Twelfth Large Earthquake on the Southern Hayward Fault in the Past 1900 Years , 2010 .

[48]  Arthur Frankel,et al.  Effects of 3D Random Correlated Velocity Perturbations on Predicted Ground Motions , 2010 .

[49]  A. Rodgers,et al.  Simulation of topographic effects on seismic waves from shallow explosions near the North Korean nuclear test site with emphasis on shear wave generation , 2010 .

[50]  J. Virieux,et al.  An hp-adaptive discontinuous Galerkin finite-element method for 3-D elastic wave modelling , 2010 .

[51]  D. Boore Orientation-independent, nongeometric-mean measures of seismic intensity from two horizontal components of motion , 2010 .

[52]  Pierre-Yves Bard,et al.  Quantitative Comparison of Four Numerical Predictions of 3D Ground Motion in the Grenoble Valley, France , 2010 .

[53]  Shawn Larsen,et al.  Moderate Earthquake Ground-Motion Validation in the San Francisco Bay Area , 2010 .

[54]  Gideon Juve,et al.  The ShakeOut earthquake scenario: Verification of three simulation sets , 2010 .

[55]  Norman A. Abrahamson,et al.  Repeatable Source, Site, and Path Effects on the Standard Deviation for Empirical Ground-Motion Prediction Models , 2011 .

[56]  Martin Galis,et al.  3‐D finite‐difference, finite‐element, discontinuous‐Galerkin and spectral‐element schemes analysed for their accuracy with respect to P‐wave to S‐wave speed ratio , 2011 .

[57]  Emanuele Casarotti,et al.  Forward and adjoint simulations of seismic wave propagation on fully unstructured hexahedral meshes , 2011 .

[58]  Jacobo Bielak,et al.  Large-Scale Earthquake Simulation: Computational Seismology and Complex Engineering Systems , 2011, Computing in Science & Engineering.

[59]  C. Pelties,et al.  Regional wave propagation using the discontinuous Galerkin method , 2012 .

[60]  N. Anders Petersson,et al.  A Fourth Order Accurate Finite Difference Scheme for the Elastic Wave Equation in Second Order Formulation , 2012, J. Sci. Comput..

[61]  Remko Scharroo,et al.  Generic Mapping Tools: Improved Version Released , 2013 .

[62]  Jun Zhou,et al.  Physics-based seismic hazard analysis on petascale heterogeneous supercomputers , 2013, 2013 SC - International Conference for High Performance Computing, Networking, Storage and Analysis (SC).

[63]  H. Thio,et al.  Broadband Ground‐Motion Simulation of an Intraslab Earthquake and Nonlinear Site Response: 2010 Ferndale, California, Earthquake Case Study , 2013 .

[64]  Jacobo Bielak,et al.  Ground‐Motion Simulation and Validation of the 2008 Chino Hills, California, Earthquake , 2013 .

[65]  Norman A. Abrahamson,et al.  Summary of the ASK14 Ground Motion Relation for Active Crustal Regions , 2014 .

[66]  Norman A. Abrahamson,et al.  Adding fling effects to processed ground‐motion time histories , 2014 .

[67]  Jonathan P. Stewart,et al.  NGA-West2 Equations for Predicting PGA, PGV, and 5% Damped PSA for Shallow Crustal Earthquakes , 2014 .

[68]  K. Campbell,et al.  NGA-West2 Ground Motion Model for the Average Horizontal Components of PGA, PGV, and 5% Damped Linear Acceleration Response Spectra , 2014 .

[69]  Robert R. Youngs,et al.  Update of the Chiou and Youngs NGA Model for the Average Horizontal Component of Peak Ground Motion and Response Spectra , 2014 .

[70]  N. Anders Petersson,et al.  Super-Grid Modeling of the Elastic Wave Equation in Semi-Bounded Domains , 2014 .

[71]  Arthur J. Rodgers,et al.  Kinematic finite-source model for the 24 August 2014 South Napa, California, earthquake from joint inversion of seismic, GPS, and InSAR data , 2015 .

[72]  Ralph J. Archuleta,et al.  UCSB Method for Simulation of Broadband Ground Motion from Kinematic Earthquake Sources , 2015 .

[73]  S. Hough,et al.  The 1868 Hayward Fault, California, Earthquake: Implications for Earthquake Scaling Relations on Partially Creeping Faults , 2015 .

[74]  N. Anders Petersson,et al.  Wave propagation in anisotropic elastic materials and curvilinear coordinates using a summation-by-parts finite difference method , 2015, J. Comput. Phys..

[75]  A Pitarka,et al.  Refinements to the Graves and Pitarka (2010) Broadband GroundMotion Simulation Method , 2017 .

[76]  Lion Krischer,et al.  ObsPy: a bridge for seismology into the scientific Python ecosystem , 2015 .

[77]  Kim B. Olsen,et al.  The SDSU Broadband Ground‐Motion Generation Module BBtoolbox Version 1.5 , 2015 .

[78]  W. Walter,et al.  Analysis of Ground Motion from An Underground Chemical Explosion , 2015 .

[79]  Robert W. Graves,et al.  Kinematic Ground‐Motion Simulations on Rough Faults Including Effects of 3D Stochastic Velocity Perturbations , 2016 .

[80]  Tobias Scheffer,et al.  A Nonergodic Ground‐Motion Model for California with Spatially Varying Coefficients , 2016 .

[81]  Keli Cheng,et al.  Evaluation of the southern California seismic velocity models through simulation of recorded events , 2016 .

[82]  A. Pitarka,et al.  Generation of Shear Motion from an Isotropic Explosion Source by Scattering in Heterogeneous Media , 2016 .

[83]  Peter J. Stafford,et al.  Interfrequency Correlations among Fourier Spectral Ordinates and Implications for Stochastic Ground-Motion Simulation , 2017 .

[84]  N. Anders Petersson,et al.  Toward Exascale Earthquake Ground Motion Simulations for Near-Fault Engineering Analysis , 2017, Computing in Science & Engineering.

[85]  Lion Krischer,et al.  Modular and flexible spectral-element waveform modelling in two and three dimensions , 2018, Geophysical Journal International.