Fatigue crack growth analysis in layered heterogeneous material systems using peridynamic approach

Abstract In this study, the peridynamic fatigue model for a homogeneous material is extended to the layered heterogeneous material. Thermal residual stress and the corresponding stress intensity factor are calculated, within the framework of the peridynamic theory, by considering the cooling process using a pairwise force function caused by the thermal loading effect. To avoid overlapping of the cracked surfaces due to compressive thermal residual stress, the notion of short range force (Macek and Silling, 2007) is newly introduced. In addition, an auxiliary reference configuration is used to define the cyclic bond strain in the constricted material. The proposed approach is validated by performing an illustrative case study.

[1]  Erkan Oterkus,et al.  Peridynamic Theory and Its Applications , 2013 .

[2]  Michael Ortiz,et al.  A cohesive model of fatigue crack growth , 2001 .

[3]  S. Silling,et al.  A meshfree method based on the peridynamic model of solid mechanics , 2005 .

[4]  S. Silling,et al.  Peridynamic modeling of membranes and fibers , 2004 .

[5]  Ted Belytschko,et al.  A finite element method for crack growth without remeshing , 1999 .

[6]  Ted Belytschko,et al.  Abaqus implementation of extended finite element method using a level set representation for three-dimensional fatigue crack growth and life predictions , 2010 .

[7]  S. Silling,et al.  Peridynamics via finite element analysis , 2007 .

[8]  Ted Belytschko,et al.  Elastic crack growth in finite elements with minimal remeshing , 1999 .

[9]  S. Silling,et al.  Peridynamic States and Constitutive Modeling , 2007 .

[10]  H. Schindler Determination of residual stress distributions from measured stress intensity factors , 1996 .

[11]  Erkan Oterkus,et al.  Fatigue failure model with peridynamic theory , 2010, 2010 12th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems.

[12]  A. Janne Carlsson,et al.  Weight Functions and Stress Intensity Factor Solutions , 1991 .

[13]  S. Silling,et al.  Deformation of a Peridynamic Bar , 2003 .

[14]  Xiaopeng Xu,et al.  Numerical simulations of fast crack growth in brittle solids , 1994 .

[15]  S. Silling Reformulation of Elasticity Theory for Discontinuities and Long-Range Forces , 2000 .

[16]  Richard B. Lehoucq,et al.  Force flux and the peridynamic stress tensor , 2008 .

[17]  Nicolas Sau,et al.  Peridynamic modeling of concrete structures , 2007 .

[18]  M. Ortiz,et al.  Computational modelling of impact damage in brittle materials , 1996 .

[19]  E. Madenci,et al.  Peridynamic theory for progressive damage prediction in center-cracked composite laminates , 2009 .

[20]  Jifeng Xu,et al.  Peridynamic analysis of damage and failure in composites. , 2006 .

[21]  A. de-Andrés,et al.  Elastoplastic finite element analysis of three-dimensional fatigue crack growth in aluminum shafts subjected to axial loading , 1999 .