Soil Classification Based on Physical and Chemical Properties Using Random Forests
暂无分享,去创建一个
Carlos Viegas Damásio | João Pires | Jacinto Estima | Luís M. de Sousa | Bruno Martins | Didier Dias | C. Damásio | Didier Dias | B. Martins | João Pires | L. M. D. Sousa | J. Estima
[1] Russell G. Congalton,et al. A review of assessing the accuracy of classifications of remotely sensed data , 1991 .
[2] Leo Breiman,et al. Random Forests , 2001, Machine Learning.
[3] Nicholas L. Crookston,et al. yaImpute: An R Package for kNN Imputation , 2008 .
[4] M. Pringle,et al. Mapping depth-to-rock from legacy data, using a generalized linear mixed model , 2014 .
[5] Dominique Arrouays,et al. GlobalSoilMap : Basis of the global spatial soil information system , 2014 .
[6] Thomas C. Edwards,et al. Machine learning for predicting soil classes in three semi-arid landscapes , 2015 .
[7] J.G.B. Leenaars,et al. WoSIS: providing standardised soil profile data for the world , 2016 .
[8] Jin Zhang,et al. An overview and comparison of machine-learning techniques for classification purposes in digital soil mapping , 2016 .
[9] Marvin N. Wright,et al. SoilGrids250m: Global gridded soil information based on machine learning , 2017, PloS one.
[10] Marvin N. Wright,et al. Random forest as a generic framework for predictive modeling of spatial and spatio-temporal variables , 2018, PeerJ.
[11] M. Meier,et al. Digital Soil Mapping Using Machine Learning Algorithms in a Tropical Mountainous Area , 2018, Revista Brasileira de Ciência do Solo.
[12] E. D. Souza,et al. Multinomial Logistic Regression and Random Forest Classifiers in Digital Mapping of Soil Classes in Western Haiti , 2018, Revista Brasileira de Ciência do Solo.
[13] T. Behrens,et al. Predicting reference soil groups using legacy data: A data pruning and Random Forest approach for tropical environment (Dano catchment, Burkina Faso) , 2018, Scientific Reports.