Record of massive upwellings from the Pacific large low shear velocity province

[1]  E. Garnero,et al.  Continent-sized anomalous zones with low seismic velocity at the base of Earth's mantle , 2016 .

[2]  B. Steinberger,et al.  A failure to reject: Testing the correlation between large igneous provinces and deep mantle structures with EDF statistics , 2016 .

[3]  P. Olson Mantle control of the geodynamo: Consequences of top‐down regulation , 2015 .

[4]  Barbara Romanowicz,et al.  Broad plumes rooted at the base of the Earth's mantle beneath major hotspots , 2015, Nature.

[5]  G. Alvarado,et al.  Recycled crust in the Galápagos Plume source at 70 Ma: Implications for plume evolution , 2015 .

[6]  P. Olson,et al.  Mantle superplumes induce geomagnetic superchrons , 2015, Front. Earth Sci..

[7]  R. Müller,et al.  Long-term interaction between mid-ocean ridges and mantle plumes , 2015 .

[8]  A. Malinverno,et al.  Environmental consequences of Ontong Java Plateau and Kerguelen Plateau volcanism , 2015 .

[9]  G. Harlow,et al.  Metamorphic history of riebeckite- and aegirine-augite-bearing high-pressure–low-temperature blocks within the Siuna Serpentinite Mélange, northeastern Nicaragua , 2015 .

[10]  M. Dąbrowski,et al.  Survival of LLSVPs for billions of years in a vigorously convecting mantle: Replenishment and destruction of chemical anomaly , 2015 .

[11]  V. Thiel,et al.  Assessing the utility of trace and rare earth elements as biosignatures in microbial iron oxyhydroxides , 2015, Front. Earth Sci..

[12]  Paterno R. Castillo,et al.  The recycling of marine carbonates and sources of HIMU and FOZO ocean island basalts , 2015 .

[13]  P. Asimow,et al.  PRIMELT3 MEGA.XLSM software for primary magma calculation: Peridotite primary magma MgO contents from the liquidus to the solidus , 2015 .

[14]  B. Steinberger,et al.  Deep mantle structure as a reference frame for movements in and on the Earth , 2014, Proceedings of the National Academy of Sciences.

[15]  C. Langmuir,et al.  Geophysical and Geochemical Evidence for Deep Temperature Variations Beneath Mid-Ocean Ridges , 2014, Science.

[16]  L. A. Coogan,et al.  Aluminum-in-olivine thermometry of primitive basalts: Evidence of an anomalously hot mantle source for large igneous provinces , 2014 .

[17]  A. Kerr 4.18 – Oceanic Plateaus , 2014 .

[18]  Karl K. Turekian,et al.  Treatise on geochemistry , 2014 .

[19]  H. Terasaki,et al.  Ponded melt at the boundary between the lithosphere and asthenosphere , 2013 .

[20]  M. Norman,et al.  The composition and distribution of the rejuvenated component across the Hawaiian plume: Hf‐Nd‐Sr‐Pb isotope systematics of Kaula lavas and pyroxenite xenoliths , 2013 .

[21]  C. Vérard,et al.  Geodynamic Reconstructions of the Australides—2: Mesozoic–Cainozoic , 2013 .

[22]  N. Pearson,et al.  Jadeitite formed during subduction: In situ zircon geochronology constraints from two different tectonic events within the Guatemala Suture Zone , 2013 .

[23]  C. Vérard,et al.  The formation of Pangea , 2013 .

[24]  R. V. Waasbergen,et al.  Cretaceous Guyots in the Northwest Pacific: an Overview of their Geology and Geophysics , 2013 .

[25]  Charles H. Langmuir,et al.  The mean composition of ocean ridge basalts , 2013 .

[26]  C. Vérard,et al.  Non‐random distribution of euler poles: is plate tectonics subject to rotational effects? , 2012 .

[27]  J. Gee,et al.  The cooling history and the depth of detachment faulting at the Atlantis Massif oceanic core complex , 2012 .

[28]  K. Flores Mesozoic oceanic terranes of Southern Central America-Geology, geochesmistry and geodynamics , 2012 .

[29]  Roger P. Denlinger,et al.  A robust method to forecast volcanic ash clouds , 2012 .

[30]  Brian F. Windley,et al.  The Altaids of Central Asia: A tectonic and evolutionary innovative review , 2012 .

[31]  P. Wessel,et al.  Reconstructing Ontong Java Nui: Implications for Pacific absolute plate motion, hotspot drift and true polar wander , 2012 .

[32]  B. Steinberger,et al.  A geodynamic model of plumes from the margins of Large Low Shear Velocity Provinces , 2012 .

[33]  C. Vérard,et al.  Geodynamic reconstructions of the South America–Antarctica plate system , 2012 .

[34]  G. Christeson,et al.  Crustal structure of the Yakutat terrane and the evolution of subduction and collision in southern Alaska , 2012 .

[35]  R. Carlson,et al.  An ancient recipe for flood-basalt genesis , 2011, Nature.

[36]  R. Stern,et al.  The ‘subduction initiation rule’: a key for linking ophiolites, intra-oceanic forearcs, and subduction initiation , 2011 .

[37]  P. Michael,et al.  Age and geochemistry of the oceanic Manihiki Plateau, SW Pacific: New evidence for a plume origin , 2011 .

[38]  C. Schultz Diversity of Hydrothermal Systems on Slow Spreading Ocean Ridges , 2011 .

[39]  F. Hauff,et al.  Age and geochemistry of volcanic rocks from the Hikurangi and Manihiki oceanic Plateaus , 2010 .

[40]  Pierre Henry,et al.  Pore fluid chemistry of the North Anatolian Fault Zone in the Sea of Marmara: A diversity of sources and processes , 2010 .

[41]  William M. White,et al.  Oceanic Island Basalts and Mantle Plumes: The Geochemical Perspective , 2010 .

[42]  H. Jenkyns Geochemistry of oceanic anoxic events , 2010 .

[43]  C. Herzberg,et al.  Petrological evidence for secular cooling in mantle plumes , 2009, Nature.

[44]  G. Stampfli,et al.  Plate tectonics of the Alpine realm , 2009 .

[45]  G. Stampfli,et al.  The birth of the Rheic Ocean — Early Palaeozoic subsidence patterns and subsequent tectonic plate scenarios , 2008 .

[46]  G. Stampfli,et al.  An alternative plate tectonic model for the Palaeozoic–Early Mesozoic Palaeotethyan evolution of Southeast Asia (Northern Thailand–Burma) , 2008 .

[47]  H. Kozur,et al.  A new classification of the Turkish terranes and sutures and its implication for the paleotectonic history of the region , 2008 .

[48]  Sasan Bagheri,et al.  The Anarak, Jandaq and Posht-e-Badam metamorphic complexes in central Iran: New geological data, relationships and tectonic implications , 2008 .

[49]  P. Renne,et al.  Synchronizing Rock Clocks of Earth History , 2008, Science.

[50]  Walter R. Roest,et al.  Age, spreading rates, and spreading asymmetry of the world's ocean crust , 2008 .

[51]  Kevin Burke,et al.  Plume Generation Zones at the margins of Large Low Shear Velocity Provinces on the core–mantle boundary , 2008 .

[52]  A. Kerr,et al.  Oceanic plateaus: Problematic plumes, potential paradigms , 2007 .

[53]  M. Pringle RADIOMETRIC AGES OF BASALTIC BASEMENT RECOVERED AT SITES 800 , 801 , AND 802 , LEG 129 , WESTERN PACIFIC OCEAN , 2006 .

[54]  W. Griffin,et al.  Lithospheric domains and controls on kimberlite emplacement, Slave Province, Canada: Evidence from elastic thickness and upper mantle composition , 2005 .

[55]  A. Kerr,et al.  Tectonic evolution of the Caribbean and northwestern South America: The case for accretion of two Late Cretaceous oceanic plateaus , 2005 .

[56]  B. Steinberger,et al.  On the uncertainties in hot spot reconstructions and the significance of moving hot spot reference frames , 2005 .

[57]  F. Hauff,et al.  70 m.y. history (139–69 Ma) for the Caribbean large igneous province , 2004 .

[58]  H. Staudigel 3.15 – Hydrothermal Alteration Processes in the Oceanic Crust , 2003 .

[59]  R. Duncan,et al.  High‐resolution 40Ar/39Ar dating of the oldest oceanic basement basalts in the western Pacific basin , 2003 .

[60]  H. Staudigel,et al.  Short‐lived and discontinuous intraplate volcanism in the South Pacific: Hot spots or extensional volcanism? , 2003 .

[61]  B. Hardarson,et al.  Does depleted mantle form an intrinsic part of the Iceland plume? , 2003 .

[62]  A. Hofmann,et al.  Contrasting geochemical patterns in the 3.7-3.8 Ga pillow basalt cores and rims, Isua greenstone belt, Southwest Greenland: implications for postmagmatic alteration processes , 2003 .

[63]  Mark A. Richards,et al.  Plume capture by divergent plate motions: implications for the distribution of hotspots, geochemistry of mid-ocean ridge basalts, and estimates of the heat flux at the core–mantle boundary , 2003 .

[64]  J. Mahoney,et al.  Correlated geophysical, geochemical, and volcanological manifestations of plume‐ridge interaction along the Galápagos Spreading Center , 2002 .

[65]  Katherine A. Kelley,et al.  Probing the Pacific’s oldest MORB glass: mantle chemistry and melting conditions during the birth of the Pacific Plate , 2002 .

[66]  Peter E. van Keken,et al.  MANTLE MIXING: The Generation, Preservation, and Destruction of Chemical Heterogeneity , 2002 .

[67]  G. Stampfli,et al.  A plate tectonic model for the Paleozoic and Mesozoic constrained by dynamic plate boundaries and restored synthetic oceanic isochrons , 2002 .

[68]  Lapo Boschi,et al.  A comparison of tomographic and geodynamic mantle models , 2002 .

[69]  S. Humphris,et al.  The geochemical consequences of late-stage low-grade alteration of lower ocean crust at the SW Indian Ridge: Results from ODP Hole 735B (Leg 176) , 2001 .

[70]  M. Tiepolo,et al.  Partitioning of rare earth elements, Y, Th, U, and Pb between pargasite, kaersutite, and basanite to trachyte melts: Implications for percolated and veined mantle , 2000 .

[71]  A. Kerr,et al.  LIP Reading: Recognizing Oceanic Plateaux in the Geological Record , 2000 .

[72]  D. Garbe‐Schönberg,et al.  Age and geochemistry of basaltic complexes in western Costa Rica: Contributions to the geotectonic evolution of Central America , 2000 .

[73]  P. Renne,et al.  A test for systematic errors in 40Ar/39Ar geochronology through comparison with U/Pb analysis of a 1.1-Ga rhyolite , 2000 .

[74]  P. Castillo,et al.  Isotope geochemistry of the Darwin Rise seamounts and the nature of long‐term mantle dynamics beneath the south central Pacific , 1999 .

[75]  A. Kerr Oceanic plateau formation: a cause of mass extinction and black shale deposition around the Cenomanian–Turonian boundary? , 1998, Journal of the Geological Society.

[76]  William E Seyfried,et al.  Trace Element Mobility and Lithium Isotope Exchange During Hydrothermal Alteration of Seafloor Weathered Basalt: An Experimental Study at 350°C, 500 Bars , 1998 .

[77]  R. Duncan,et al.  Nicoya Peninsula, Costa Rica: A single suite of Caribbean oceanic plateau magmas , 1997 .

[78]  R. Dietmar Müller,et al.  Digital isochrons of the world's ocean floor , 1997 .

[79]  A. Kerr,et al.  Depleted mantle-plume geochemical signatures: No paradox for plume theories , 1995 .

[80]  C. Devey,et al.  Geochemistry of the Pitcairn seamounts, I: source character and temporal trends , 1993 .

[81]  S. Stein,et al.  The Mesozoic Pacific: Geology, Tectonics, and Volcanism: A Volume in Memory of Sy Schlanger , 1993 .

[82]  M. Pringle 20. RADIOMETRIC AGES OF BASALTIC BASEMENT RECOVERED AT SITES 800, 801, AND 802, LEG 129, WESTERN PACIFIC OCEAN1 , 1992 .

[83]  C. Langmuir,et al.  Petrological systematics of mid-ocean ridge basalts: Constraints on melt generation beneath ocean ridges , 1992 .

[84]  J. Schilling Fluxes and excess temperatures of mantle plumes inferred from their interaction with migrating mid-ocean ridges , 1991, Nature.

[85]  C. Langmuir,et al.  Global correlations of ocean ridge basalt chemistry with axial depth and crustal thickness , 1987 .

[86]  A. Hajash,et al.  Initial submarine alteration of basaltic pillow lavas; a microprobe study , 1976 .

[87]  B. Mason Composition of the Earth , 1966, Nature.