Frege’s Philosophy of Mathematics
暂无分享,去创建一个
Introduction, William Demopoulos appendix, John L. Bell. Part 1 The intellectual background to Frege's logicism: Kant, Bolzano and the emergence of logicism, Alberto Coffa Frege - the last logicist, Paul Benacerraf Frege and the rigorization of analysis, William Demopoulos Frege and arbitrary functions, John P. Burgess Frege - the royal road from geometry - postscript, Mark Wilson. Part 2 The mathematical content of Begriffsschrift and Grundlageng: Reading the Begriffsschrift, Geoge Boolos Frege's Theory of number - postscript, Charles parsons The consistency of Frege's "Foundation of arithmetics", George Boolos The standard of equality of numbers, George Boolos. Part 3 Grundgesetze der arithmetik: The development of arithmetic in Frege's "Grundgesetze der arithmetik - postscript, Richard G. Heck, Jr. Definition by induction in Frege's Grundgesetze der arithmetik, Richard G. Heck, Jr. Eudoxus and Dedekind - on the ancient Greek theory of ratios and its relation to modern mathematics, Howard Stein Frege's theory of real numbers, Peter M. Simons Frege's theory of real number, Michael Dummett On a question of Frege's about right-ordered groups, - postscript, Peter M. Newmann et al On the consistency of the first-order portion of Frege's logical system, Terence Parsons Fregean extensions of first-order theories, John L. Bell Saving Frege from contradiction, George Boolos.