Spatial Econometric Functions in R

Developments in the R implementation of the S data analysis language are providing new and effective tools needed for writing functions for spatial analysis. The release of an R package for constructing and manipulating spatial weight, and for testing for global and local dependence during 2001 has been followed by work on functions for spatial econometrics (package spdep; the package may be retrieved from: http://cran.r-project.org). This chapter gives an introduction to some of the issues faced in writing this package in R, to the use of classes and object attributes, and to class-based method dispatch. In particular, attention will be paid to the question of how prediction should be understood in relation to the most commonly employed spatial econometrics simultaneous autoregressive models. Prediction is of importance because fitted models may reasonably be expected to be used to provide predictions of the response variable using new data − both attribute and position − that may not have been available when the model was fitted.

[1]  Daniel A. Griffith,et al.  Spatial Regression Analysis on the PC: Spatial Statistics Using Sas , 1993 .

[2]  J. Ord,et al.  Testing for Local Spatial Autocorrelation in the Presence of Global Autocorrelation , 2001 .

[3]  F. Hartwig,et al.  Exploratory Data Analysis , 2008, Using Science in Cybersecurity.

[4]  P. Gould Is Statistix Inferens the Geographical Name for A Wild Goose , 1970 .

[5]  P. Diggle,et al.  Spatial variation in risk of disease: a nonparametric binary regression approach , 2002 .

[6]  Roger Bivand,et al.  Exploring Spatial Data Analysis Techniques Using R: The Case of Observations with No Neighbors , 2004 .

[7]  P. Diggle,et al.  Model‐based geostatistics , 2007 .

[8]  Roger Bivand,et al.  Implementing functions for spatial statistical analysis using the language , 2000, J. Geogr. Syst..

[9]  R. Haining,et al.  The Problem of Missing Data on Spatial Surfaces , 1984 .

[10]  Daniel A. Griffith,et al.  A Casebook for Spatial Statistical Data Analysis: A Compilation of Analyses of Different Thematic Data Sets , 1999 .

[11]  Roger Bivand,et al.  Implementing Spatial Data Analysis Software Tools in R , 2006 .

[12]  R. Haining Spatial Data Analysis in the Social and Environmental Sciences , 1990 .

[13]  Brian D. Ripley,et al.  Applications of Monte Carlo Methods in Spatial and Image Analysis , 1992 .

[14]  C. Gotway,et al.  Combining Incompatible Spatial Data , 2002 .

[15]  William N. Venables,et al.  Modern Applied Statistics with S , 2010 .

[16]  Luc Anselin,et al.  New Directions in Spatial Econometrics , 2011 .

[17]  N. Wrigley,et al.  Quantitative geography : a British view , 1981 .

[18]  Trevor Hastie,et al.  Statistical Models in S , 1991 .

[19]  J. Chambers,et al.  The New S Language , 1989 .

[20]  Manfred M. Fischer,et al.  Handbook of Applied Spatial Analysis , 2010 .

[21]  D. Bates,et al.  Mixed-Effects Models in S and S-PLUS , 2001 .

[22]  D. Griffith Eigenfunction properties and approximations of selected incidence matrices employed in spatial analyses , 2000 .

[23]  S. Fotheringham,et al.  Geographically weighted summary statistics — aframework for localised exploratory data analysis , 2002 .

[24]  Daniel A. Griffith,et al.  Spatial Statistics: Past, Present, and Future , 1990 .

[25]  A. Getis,et al.  Comparative Spatial Filtering in Regression Analysis , 2002 .

[26]  R. Haining,et al.  Maximum likelihood estimation with missing spatial data and with an application to remotely sensed data , 1989 .

[27]  William N. Venables,et al.  Modern Applied Statistics with S-Plus. , 1996 .

[28]  Karl-Heinz Jöckel,et al.  Bootstrapping and Related Techniques , 1992 .

[29]  Noel A Cressie,et al.  Statistics for Spatial Data, Revised Edition. , 1994 .

[30]  John M. Chambers,et al.  Programming With Data , 1998 .

[31]  A. Getis Spatial Filtering in a Regression Framework: Examples Using Data on Urban Crime, Regional Inequality, and Government Expenditures , 2010 .

[32]  R. J. Martin Exact maximum likelihood for incomplete data from a correlated gaussian process , 1984 .

[33]  G. Olsson Explanation, Prediction, and Meaning Variance: An Assessment of Distance Interaction Models , 1970 .

[34]  Ross Ihaka,et al.  Gentleman R: R: A language for data analysis and graphics , 1996 .

[35]  Daniel A. Griffith,et al.  A linear regression solution to the spatial autocorrelation problem , 2000, J. Geogr. Syst..

[36]  Peter Dalgaard,et al.  Introductory statistics with R , 2002, Statistics and computing.

[37]  G. Olsson Complementary Models: A Study of Colonization Maps , 1968 .

[38]  Susan R. Wilson,et al.  Bayesian projection of the acquired immune deficiency syndrome epidemic , 2002 .

[39]  L. Anselin Spatial Econometrics: Methods and Models , 1988 .

[40]  William N. Venables,et al.  S Programming , 2000 .

[41]  A. Stewart Fotheringham,et al.  Geographically Weighted Regression: A Method for Exploring Spatial Nonstationarity , 2010 .

[42]  D A Griffith,et al.  Statistical Analysis of Spatial Data in the Presence of Missing Observations: A Methodological Guide and an Application to Urban Census Data , 1989, Environment & planning A.

[43]  Sergio J. Rey,et al.  Advances in Spatial Econometrics , 2004 .

[44]  Otis W. Gilley,et al.  On the Harrison and Rubinfeld Data , 1996 .

[45]  R. Haining DIAGNOSTICS FOR REGRESSION MODELING IN SPATIAL ECONOMETRICS , 1994 .

[46]  B. Ripley Statistical inference for spatial processes , 1990 .