Desingularization of two-dimensional schemes

We present a new proof of the existence of a desingularization for any excellent surface (where "surface" means "two-dimensional reduced noetherian scheme"). The problem of resolution of singularities of surfaces has a long history (cf. the expository article [25]). Separate proofs of resolution for arbitrary excellent surfaces were announced by Abhyankar and Hironaka in 1967; to date (1977) full details have not yet been published (but cf. [2], [12], [13], [14] and [15]). Actually Hironaka's results on "embedded" resolution are stronger than what we shall prove, viz. the following theorem (which nevertheless suffices for many applications). Unless otherwise indicated, all rings in this paper will be commutative and noetherian, and all schemes will be noetherian and reduced. We say that a point z of a scheme Z is regular if the stalk 0,, of the structure sheaf at z is a regular local ring, and singular otherwise; Z is non-singular if all its points are regular.

[1]  J. Sally On the associated graded ring of a local Cohen-Macaulay ring , 1977 .

[2]  O. Zariski The concept of a simple point of an abstract algebraic variety , 1947 .

[3]  H. Hironaka Additive Groups Associated with Points of a Projective Space , 1970 .

[4]  Henry B. Laufer On Rational Singuarities , 1972 .

[5]  O. Zariski,et al.  Equisingular deformations of normal surface singularities, I , 1976 .

[6]  E. Kunz Differentialformen inseparabler algebraischer Funktionenkörper , 1961 .

[7]  Eben Matlis,et al.  Injective modules over Noetherian rings. , 1958 .

[8]  D. Rees A Note on Analytically Unramified Local Rings , 1961 .

[9]  D. G. Northcott,et al.  Reductions of ideals in local rings , 1954, Mathematical Proceedings of the Cambridge Philosophical Society.

[10]  E. Kunz Differentialformen auf algebraischen varietäten mit singularitäten II , 1978 .

[11]  S. Kleiman Toward a numerical theory of ampleness , 1966 .

[12]  Oscar Zariski,et al.  The Reduction of the Singularities of an Algebraic Surface , 1939 .

[13]  H. Hironaka Characteristic polyhedra of singularities , 1967 .

[14]  J. Wahl Equations defining rational singularities , 1977 .

[15]  M. Atiyah,et al.  Introduction to the Problem of Minimal Models in the Theory of Algebraic Surfaces , 1960, The Mathematical Gazette.

[16]  K. Kiyek Kohomologiegruppen und Konstantenreduktion in Funktionenkörpern , 1970 .

[17]  S. Abhyankar On the Valuations Centered in a Local Domain , 1956 .

[18]  Alexander Grothendieck,et al.  On the de rham cohomology of algebraic varieties , 1966 .

[19]  F. Hirzebruch The topology of normal singularities of an algebraic surface (d’après un article de D. Mumford) , 1964 .

[20]  R. Berger,et al.  Differentialrechnung in der analytischen Geometrie , 1967 .

[21]  J. Wahl Vanishing theorems for resolutions of surface singularities , 1975 .

[22]  R. Kiehl Ausgezeichnete Ringe in der nichtarchimedischen analytischen Geometrie. , 1969 .

[23]  R. Hartshorne Residues And Duality , 1966 .