Determination of the CMSSM parameters using neural networks

In most (weakly interacting) extensions of the Standard Model the relation mapping the parameter values onto experimentally measurable quantities can be computed (with some uncertainties), but the inverse relation is usually not known. In this paper we demonstrate the ability of artificial neural networks to find this unknown relation, by determining the unknown parameters of the constrained minimal supersymmetric extension of the Standard Model (CMSSM) from quantities that can be measured at the LHC. We expect that the method works also for many other new physics models. We compare its performance with the results of a straightforward � 2 minimization. We simulate LHC signals at a center of mass energy of 14TeV at the hadron level. In this proof–of–concept study we do not explicitly simulate Standard Model backgrounds, but apply cuts that have been shown to enhance the signal–to–background ratio. We analyze four different benchmark points that lie just beyond current lower limits on superparticle masses, each of which leads to around 1000 events after cuts for an integrated luminosity of 10fb −1 . We use up to 84 observables, most of which are counting observables; we do not attempt to directly reconstruct (differences of) masses from kinematic edges or kinks of distributions. We nevertheless find that m0 and m1/2 can be determined reliably, with errors as small ˜

[1]  Chan Beom Park,et al.  Reducing combinatorial uncertainties: a new technique based on MT2 variables , 2011, 1109.2201.

[2]  K. Matchev,et al.  Using kinematic boundary lines for particle mass measurements and disambiguation in SUSY-like events with missing energy , 2009, 0903.4371.

[3]  G. Polesello,et al.  A hybrid method for determining SUSY particle masses at the LHC with fully identified cascade decays , 2007 .

[4]  J. T. Childers,et al.  Search for supersymmetry in events with large missing transverse momentum, jets, and at least one tau lepton in 7 TeV proton-proton collision data with the ATLAS detector , 2012 .

[5]  C. Lester,et al.  Measuring sparticle masses in non-universal string inspired models at the LHC , 2000, hep-ph/0007009.

[6]  R. Godbole,et al.  Theory and phenomenology of sparticles : an account of four-dimensional N=1 supersymmetry in high energy physics , 2004 .

[7]  H. Baer,et al.  Supersymmetry discovery potential of the LHC at s1/2 = 10 and 14 TeV without and with missing ET , 2009, 0907.1922.

[8]  E. Kuflik,et al.  Extracting the dark matter mass from single stage cascade decays at the LHC , 2010, 1003.2204.

[9]  C. Collaboration,et al.  Search for supersymmetry in events with opposite-sign dileptons and missing transverse energy using an artificial neural network , 2013, 1301.0916.

[10]  M. Serna,et al.  Mass determination of new states at hadron colliders , 2007, 0712.0943.

[11]  N. Kersting Simple mass reconstruction technique for supersymmetric particles at the LHC , 2009, 0901.2765.

[12]  V. Barger,et al.  Determining the squark mass at the LHC , 2011, 1103.0018.

[13]  Jonathan L. Feng,et al.  Three-loop corrections to the Higgs boson mass and implications for supersymmetry at the LHC. , 2013, Physical review letters.

[14]  A. Barr,et al.  mTGen: mass scale measurements in pair-production at colliders , 2007, 0708.1028.

[15]  B. Bhattacherjee,et al.  Top polarization and stop mixing from boosted jet substructure , 2012, 1211.7261.

[16]  Jamie Tattersall,et al.  Exploring QCD uncertainties when setting limits on compressed supersymmetric spectra , 2012, 1211.4981.

[17]  C. Deans Progress in the NNPDF global analysis , 2013, 1304.2781.

[18]  M. Krämer,et al.  SUSY parameter determination at the LHC using cross sections and kinematic edges , 2010, 1003.2648.

[19]  K. Matchev,et al.  Using subsystem MT2 for complete mass determinations in decay chains with missing energy at hadron colliders , 2008, 0810.5576.

[20]  M. Battaglia,et al.  Implications of a 125 GeV Higgs for supersymmetric models , 2011, 1112.3028.

[21]  B. Gripaios Transverse observables and mass determination at hadron colliders , 2007, 0709.2740.

[22]  T. Han,et al.  Kinematic cusps with two missing particles. II. Cascade decay topology , 2012, 1206.5641.

[23]  M. M. Muhlleitner,et al.  Decays of Supersymmetric Particles --- the Program SUSY-HIT , 2006 .

[24]  D. Pagani,et al.  NLO corrections to squark-squark production and decay at the LHC , 2012, 1207.1071.

[25]  G. Polesello,et al.  A hybrid method for determining particle masses at the Large Hadron Collider with fully identified cascade decays , 2007, 0712.2718.

[26]  Qing-jun Xu,et al.  One-loop calculations of the decay of the next-to-lightest neutralino in the MSSM , 2006, hep-ph/0610267.

[27]  J. Soderqvist,et al.  Precision SUSY measurements at CERN LHC , 1997 .

[28]  A. Barr,et al.  Weighing wimps with kinks at colliders: invisible particle mass measurements from endpoints , 2007, 0711.4008.

[29]  B. Bhattacherjee,et al.  Boosted top quarks in supersymmetric cascade decays at the LHC , 2010, 1012.5289.

[30]  Chan Beom Park,et al.  Measuring superparticle masses at hadron collider using the transverse mass kink , 2007, 0711.4526.

[31]  New supersymmetry mass reconstruction method at the CERN LHC , 2004, hep-ph/0410160.

[32]  I. Kim Algebraic singularity method for mass measurements with missing energy. , 2009, Physical review letters.

[33]  Hsin-Chia Cheng,et al.  Measuring invisible particle masses using a single short decay chain , 2011, 1109.3471.

[34]  Peisi Huang,et al.  Hollow cone sieve for top , 2011, 1102.3183.

[35]  Ryszard S. Romaniuk,et al.  Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC , 2012 .

[36]  D. Tovey,et al.  On measuring the masses of pair-produced semi-invisibly decaying particles at hadron colliders , 2008, 0802.2879.

[37]  M. L. Ferrer,et al.  Search for supersymmetry in pp collisions at root s=7 Te V in final states with missing transverse momentum and b-jets with the ATLAS detector , 2012 .

[38]  A. Barr,et al.  Transverse masses and kinematic constraints: from the boundary to the crease , 2009, 0908.3779.

[39]  Bruce Denby,et al.  Neural networks and cellular automata in experimental high energy physics , 1988 .

[40]  Manuel Drees,et al.  Scrutinizing LSP dark matter at the CERN LHC , 2000 .

[41]  B. C. Allanach,et al.  SOFTSUSY: A program for calculating supersymmetric spectra☆ , 2001, hep-ph/0104145.

[42]  A. Barr,et al.  Precision determination of invisible-particle masses at the CERN LHC , 2008, 0806.3224.

[43]  Joseph Virzi,et al.  Top quark jets at the LHC , 2008, 0810.0934.

[44]  J. Butterworth,et al.  Jet substructure as a new Higgs-search channel at the Large Hadron Collider. , 2008, Physical review letters.

[45]  T. Kamon,et al.  Diagnosis of supersymmetry breaking mediation schemes by mass reconstruction at the LHC , 2011, 1112.3966.

[46]  H. Baer,et al.  Discovery potential for supersymmetry at a high luminosity upgrade of LHC14 , 2012, 1207.4846.

[47]  A. J. Barr,et al.  Guide to transverse projections and mass-constraining variables , 2011, 1105.2977.

[48]  C. Lester,et al.  Determining SUSY model parameters and masses at the LHC using cross-sections, kinematic edges and other observables. , 2005, hep-ph/0508143.

[49]  D. Curtin Mixing It Up With MT2: Unbiased Mass Measurements at Hadron Colliders , 2011, 1112.1095.

[50]  Florian Staub,et al.  The generalised NMSSM at one loop: fine tuning and phenomenology , 2012, 1205.1509.

[51]  Y. Shimizu,et al.  Handling jets + missing ET channel using inclusive mT2 , 2008, 0808.1094.

[52]  P. Zerwas,et al.  Squark cascade decays to charginos/neutralinos: Gluon radiation , 2008, 0803.2603.

[53]  Zuowei Liu,et al.  Landscape of supersymmetric particle mass hierarchies and their signature space at the CERN Large Hadron Collider. , 2007, Physical review letters.

[54]  D. Soper,et al.  Combining subjet algorithms to enhance ZH detection at the LHC , 2010, 1005.0417.

[55]  Heekuck Oh,et al.  Neural Networks for Pattern Recognition , 1993, Adv. Comput..

[56]  M. Kramer,et al.  Using rates to measure mixed modulus-anomaly mediated supersymmetry breaking at the LHC , 2011, 1110.1287.

[57]  J. Lykken,et al.  Interpreting LHC SUSY searches in the phenomenological MSSM , 2011, 1109.5119.

[58]  Michael Spannowsky,et al.  Discovering the Higgs Boson in new physics events using jet substructure. , 2009, 0912.4731.

[59]  M. Buckley,et al.  Buckets of tops , 2013, 1302.6238.

[60]  David E Kaplan,et al.  Top-Tagging: A Method for Identifying Boosted Hadronic Tops , 2008 .

[61]  Jamie Tattersall,et al.  How low can SUSY go? Matching, monojets and compressed spectra , 2012, 1207.1613.

[62]  M. Battaglia,et al.  The Higgs sector of the phenomenological MSSM in the light of the Higgs boson discovery , 2012, 1207.1348.

[63]  B. Webber Mass determination in sequential particle decay chains , 2009, 0907.5307.

[64]  A. Barr,et al.  Precision determination of invisible-particle masses at the CERN LHC. II. , 2008, 0811.2138.

[65]  Zuowei Liu,et al.  Preprint typeset in JHEP style- HYPER VERSION Sparticles at the LHC , 2022 .

[66]  K. Matchev,et al.  A general method for model-independent measurements of particle spins, couplings and mixing angles in cascade decays with missing energy at hadron colliders , 2008, 0808.2472.

[67]  M. Drees,et al.  Mitigation of the LHC Inverse Problem , 2012, 1205.6080.

[68]  Myeonghun Park,et al.  General method for determining the masses of semi-invisibly decaying particles at hadron colliders. , 2009, Physical review letters.

[69]  Baer,et al.  Multilepton signals from supersymmetry at hadron supercolliders. , 1992, Physical review. D, Particles and fields.

[70]  Tilman Plehn,et al.  Stop reconstruction with tagged tops , 2010, 1006.2833.

[71]  Stephen P. Martin,et al.  Regularization dependence of running couplings in softly broken supersymmetry , 1993 .

[72]  N. Pietsch,et al.  Extracting gluino endpoints with event topology patterns , 2012, 1206.2146.

[73]  P. Steerenberg,et al.  Targeting pathophysiological rhythms: prednisone chronotherapy shows sustained efficacy in rheumatoid arthritis. , 2010, Annals of the rheumatic diseases.

[74]  Serguei Chatrchyan,et al.  Search for supersymmetry in final states with a single lepton, b-quark jets, , 2013 .

[75]  Hsin-Chia Cheng,et al.  Accurate Mass Determinations in Decay Chains with Missing Energy. II , 2008, 0802.4290.

[76]  M. Jankowiak,et al.  Jet dipolarity: top tagging with color flow , 2011, 1102.1012.

[77]  D. Pagani,et al.  On cascade decays of squarks at the LHC in NLO QCD , 2013, 1303.0186.

[78]  H. Baer,et al.  Weak Scale Supersymmetry: From Superfields to Scattering Events , 2012 .

[79]  T. Hauth,et al.  Search for supersymmetry in hadronic final states using MT2 in pp collisions at $ \sqrt{s}=7 $ TeV , 2012 .

[80]  Myeonghun Park,et al.  Probing Resonance Decays to Two Visible and Multiple Invisible Particles , 2012, 1206.1546.

[81]  T. Tuuva,et al.  Search for supersymmetry in pp collisions at (square root) s (equivalent) 7 TeV in events with a single lepton, jets, and missing transverse momentum , 2012, 1212.6428.

[82]  M. Gigg,et al.  Herwig++ physics and manual , 2008, 0803.0883.

[83]  A. A. Ocampo Rios,et al.  Inclusive search for supersymmetry using razor variables in pp collisions at √s=7 TeV. , 2012, Physical review letters.

[84]  T. Han,et al.  Kinematic cusps: Determining the missing particle mass at colliders , 2009, 0906.5009.

[85]  K. Matchev,et al.  Dark matter particle spectroscopy at the LHC: generalizing MT2 to asymmetric event topologies , 2009, 0911.4126.

[86]  Giacomo Polesello,et al.  Supersymmetric particle mass measurement with the boost-corrected contransverse mass , 2009, 0910.0174.

[87]  Tilman Plehn,et al.  Fat jets for a light higgs boson. , 2009, Physical review letters.

[88]  Baer,et al.  Detecting gluinos at hadron supercolliders. , 1987, Physical review. D, Particles and fields.

[89]  Direct and Indirect Detection of Neutralino Dark Matter and Collider Signatures in an $SO(10)$ Model with Two Intermediate Scales , 2010, 1006.2100.

[90]  J. Casas,et al.  Understanding and improving the Effective Mass for LHC searches , 2012, 1207.0435.

[91]  Tilman Plehn,et al.  How to improve top-quark tagging , 2011, 1111.5034.

[92]  J. T. Childers,et al.  Further search for supersymmetry at √s=7TeV in final states with jets, missing transverse momentum, and isolated leptons with the ATLAS detector , 2012 .

[93]  P. Baringer,et al.  Revisiting combinatorial ambiguities at Hadron Colliders with MT2 , 2011, 1109.1563.

[94]  C. Lester The stransverse mass, MT2, in special cases , 2011, 1103.5682.

[95]  Manuel Drees,et al.  Scrutinizing the lightest supersymmetric particle dark matter at the CERN LHC , 2001 .

[96]  T. Han,et al.  Kinematic Cusps With Two Missing Particles I: Antler Decay Topology , 2012, 1206.5633.

[97]  K. Kawagoe,et al.  Inclusive transverse mass analysis for squark and gluino mass determination , 2008, 0802.2412.

[98]  G. Kribs,et al.  Discovering Higgs Bosons of the MSSM using Jet Substructure , 2010, 1006.1656.

[99]  Konstantin T. Matchev,et al.  Precision corrections in the minimal supersymmetric standard model , 1996, hep-ph/9606211.

[100]  D. Costanzo,et al.  Supersymmetric particle mass measurement with invariant mass correlations , 2009, 0902.2331.

[101]  P Skands,et al.  SUSY Les Houches accord: interfacing SUSY spectrum calculators, decay packages, and event generators , 2003, hep-ph/0311123.

[102]  Chan Beom Park,et al.  Transverse mass for pairs of gluinos. , 2008, Physical review letters.

[103]  Hsin-Chia Cheng,et al.  Minimal kinematic constraints and m T2 , 2008, 0810.5178.

[104]  A. Roeck,et al.  Higgs and supersymmetry , 2011, 1112.3564.

[105]  J. Thaler,et al.  Maximizing boosted top identification by minimizing N-subjettiness , 2011, 1108.2701.