Homothetic Polygons and Beyond: Intersection Graphs, Recognition, and Maximum Clique

We study the Clique problem in classes of intersection graphs of convex sets in the plane. The problem is known to be NP-complete in convex-set intersection graphs and straight-line-segment intersection graphs, but solvable in polynomial time in intersection graphs of homothetic triangles. We extend the latter result by showing that for

[1]  Martin Pergel,et al.  Intersection graphs of homothetic polygons , 2008, Electron. Notes Discret. Math..

[2]  Jean Cardinal,et al.  The Clique Problem in Ray Intersection Graphs , 2013, Discret. Comput. Geom..

[3]  M. Sharir,et al.  State of the Union ( of Geometric Objects ) : A Review ∗ , 2007 .

[4]  Alexandr V. Kostochka,et al.  Coloring intersection graphs of geometric figures with a given clique number , 2004 .

[5]  R. Möhring Algorithmic graph theory and perfect graphs , 1986 .

[6]  Michael Kaufmann,et al.  Max-tolerance graphs as intersection graphs: cliques, cycles, and recognition , 2006, SODA '06.

[7]  Takao Asano,et al.  Finding the Connected Components and a Maximum Clique of an Intersection Graph of Rectangles in the Plane , 1983, J. Algorithms.

[8]  Jeremy P. Spinrad,et al.  Efficient graph representations , 2003, Fields Institute monographs.

[9]  Christoph Ambühl,et al.  The Clique Problem in Intersection Graphs of Ellipses and Triangles , 2005, Theory of Computing Systems.

[10]  Stephen E. Wright On the Dimension of a Face Exposed by Proper Separation of Convex Polyhedra , 2010, Discret. Comput. Geom..

[11]  Valentin E. Brimkov,et al.  On Intersection Graphs of Convex Polygons , 2014, IWCIA.

[12]  J. Jeffry Howbert,et al.  The Maximum Clique Problem , 2007 .

[13]  Erik Jan van Leeuwen,et al.  Convex Polygon Intersection Graphs , 2010, GD.

[14]  Tatsuya Akutsu,et al.  Efficient Algorithms for Finding Maximum and Maximal Cliques: Effective Tools for Bioinformatics , 2011 .

[15]  Jan Kratochvíl A Special Planar Satisfiability Problem and a Consequence of Its NP-completeness , 1994, Discret. Appl. Math..

[16]  J. Kratochvil,et al.  Intersection Graphs of Segments , 1994, J. Comb. Theory, Ser. B.

[17]  Ira M. Gessel,et al.  A coloring problem , 1991 .

[18]  Peter Willett,et al.  CLIP: Similarity Searching of 3D Databases Using Clique Detection , 2003, J. Chem. Inf. Comput. Sci..

[19]  Shuji Tsukiyama,et al.  A New Algorithm for Generating All the Maximal Independent Sets , 1977, SIAM J. Comput..

[20]  Erik Jan van Leeuwen,et al.  Integer representations of convex polygon intersection graphs , 2011, SoCG '11.

[21]  Jan Kratochvíl,et al.  Representing graphs by disks and balls (a survey of recognition-complexity results) , 2001, Discret. Math..

[22]  Jan Kratochvíl Intersection Graphs of Noncrossing Arc-Connected Sets in the Plane , 1996, Graph Drawing.

[23]  Jan Kratochvíl,et al.  On intersection representations of co-planar graphs , 1998, Discret. Math..

[24]  P. Gilmore,et al.  A Characterization of Comparability Graphs and of Interval Graphs , 1964, Canadian Journal of Mathematics.

[25]  F. McMorris,et al.  Topics in Intersection Graph Theory , 1987 .

[26]  Martin Pergel,et al.  Beyond Homothetic Polygons: Recognition and Maximum Clique , 2012, ISAAC.