Asymptotic Properties of Estimators for the Parameters of Spatial Inhomogeneous Poisson Point Processes

Consider a spatial point pattern realized from an inhomogeneous Poisson process on a bounded Borel set , with intensity function λ (s; θ), where . In this article, we show that the maximum likelihood estimator and the Bayes estimator are consistent, asymptotically normal, and asymptotically efficient as the sample region . These results extend asymptotic results of Kutoyants (1984), proved for an inhomogeneous Poisson process on [0, T] , where T →∞. They also formalize (and extend to the multiparameter case) results announced by Krickeberg (1982), for the spatial domain . Furthermore, a Cramér–Rao lower bound is found for any estimator of θ. The asymptotic properties of and are considered for modulated (Cox (1972)), and linear Poisson processes.

[1]  A. Wald Tests of statistical hypotheses concerning several parameters when the number of observations is large , 1943 .

[2]  T. Pitcher,et al.  Parameter estimation for stochastic processes , 1964 .

[3]  David Vere-Jones,et al.  Some Applications of Probability Generating Functionals to the Study of Input-Output Streams , 1968 .

[4]  H. Rosenthal On the subspaces ofLp(p>2) spanned by sequences of independent random variables , 1970 .

[5]  M. Westcott The probability generating functional , 1972, Journal of the Australian Mathematical Society.

[6]  J. Hájek Local asymptotic minimax and admissibility in estimation , 1972 .

[7]  Ildar Ibragimov,et al.  Local Asymptotic Normality for Non-Identically Distributed Observations , 1976 .

[8]  Y. Ogata The asymptotic behaviour of maximum likelihood estimators for stationary point processes , 1978 .

[9]  Y. Ogata,et al.  Estimation of interaction potentials of spatial point patterns through the maximum likelihood procedure , 1981 .

[10]  R. Z. Khasʹminskiĭ,et al.  Statistical estimation : asymptotic theory , 1981 .

[11]  K. Krickeberg,et al.  Processus ponctuels en statistique , 1982 .

[12]  Y. Ogata,et al.  Likelihood Analysis of Spatial Point Patterns , 1984 .

[13]  F. Graybill,et al.  Matrices with Applications in Statistics. , 1984 .

[14]  Thomas Fiksel Simple Spatial-Temporal Models for Sequences of Geological Events , 1984, J. Inf. Process. Cybern..

[15]  Y. Ogata,et al.  Point-process models with linearly parametrized intensity for application to earthquake data , 1986, Journal of Applied Probability.

[16]  M. Berman Testing for spatial association between a point process and another stochastic process , 1986 .

[17]  Andrew B. Lawson,et al.  On tests for spatial trend in a non-homogeneous Poisson process , 1988 .

[18]  S. Mase,et al.  Uniform LAN condition of planar Gibbsian point processes and optimality of maximum likelihood estimators of soft-core potential functions , 1992 .

[19]  Jens Ledet Jensen,et al.  Asymptotic Normality of Estimates in Spatial Point Processes , 1993 .