Mitochondrial remodeling in mice with cardiomyocyte-specific lipid overload.

[1]  O. Shirihai,et al.  High fat, high sucrose diet causes cardiac mitochondrial dysfunction due in part to oxidative post-translational modification of mitochondrial complex II. , 2015, Journal of molecular and cellular cardiology.

[2]  K. Mehta Emerging role of protein kinase C in energy homeostasis: A brief overview. , 2014, World journal of diabetes.

[3]  Mun Chun Chan,et al.  The many roles of PGC-1α in muscle--recent developments. , 2014, Metabolism: clinical and experimental.

[4]  A. Attie,et al.  A Role for Peroxisome Proliferator-Activated Receptor &ggr; Coactivator-1 in the Control of Mitochondrial Dynamics During Postnatal Cardiac Growth , 2014, Circulation research.

[5]  D. Bernlohr,et al.  Insulin Stimulates Mitochondrial Fusion and Function in Cardiomyocytes via the Akt-mTOR-NFκB-Opa-1 Signaling Pathway , 2013, Diabetes.

[6]  C. Vite,et al.  Identification of Niemann-Pick C1 disease biomarkers through sphingolipid profiling , 2013, Journal of Lipid Research.

[7]  E. Cadenas,et al.  Phosphatase and Tensin Homolog Deleted on Chromosome 10 (PTEN) Signaling Regulates Mitochondrial Biogenesis and Respiration via Estrogen-related Receptor α (ERRα)* , 2013, The Journal of Biological Chemistry.

[8]  Carlotta Giorgi,et al.  PRKCB/protein kinase C, beta and the mitochondrial axis as key regulators of autophagy , 2013, Autophagy.

[9]  Rick B. Vega,et al.  Perturbations in the gene regulatory pathways controlling mitochondrial energy production in the failing heart. , 2013, Biochimica et biophysica acta.

[10]  Mark A Sussman,et al.  Pim-1 preserves mitochondrial morphology by inhibiting dynamin-related protein 1 translocation , 2013, Proceedings of the National Academy of Sciences.

[11]  P. Schulze,et al.  Lipid metabolism and toxicity in the heart. , 2012, Cell metabolism.

[12]  J. Brugada,et al.  Increased Expression of Fatty-Acid and Calcium Metabolism Genes in Failing Human Heart , 2012, PloS one.

[13]  Xianhua Wang,et al.  Central Role of Mitofusin 2 in Autophagosome-Lysosome Fusion in Cardiomyocytes* , 2012, The Journal of Biological Chemistry.

[14]  K. Walsh,et al.  The Polyphenols Resveratrol and S17834 Prevent the Structural and Functional Sequelae of Diet-Induced Metabolic Heart Disease in Mice , 2012, Circulation.

[15]  Samuel H. H. Chan,et al.  Bioenergetics Failure and Oxidative Stress in Brain Stem Mediates Cardiovascular Collapse Associated with Fatal Methamphetamine Intoxication , 2012, PloS one.

[16]  S. Homma,et al.  Cardiomyocyte Triglyceride Accumulation and Reduced Ventricular Function in Mice with Obesity Reflect Increased Long Chain Fatty Acid Uptake and De Novo Fatty Acid Synthesis , 2011, Journal of obesity.

[17]  M. MacCoss,et al.  Mitochondrial proteome remodelling in pressure overload-induced heart failure: the role of mitochondrial oxidative stress. , 2012, Cardiovascular research.

[18]  A. Knowlton,et al.  Mitochondrial dynamics in heart failure. , 2011, Congestive heart failure.

[19]  O. Shirihai,et al.  Fatty Acids Suppress Autophagic Turnover in β-Cells* , 2011, The Journal of Biological Chemistry.

[20]  E. Sahin,et al.  Mitochondrial Transporter ATP Binding Cassette Mitochondrial Erythroid Is a Novel Gene Required for Cardiac Recovery After Ischemia/Reperfusion , 2011, Circulation.

[21]  P. Rabinovitch,et al.  Mitochondrial oxidative stress mediates induction of autophagy and hypertrophy in angiotensin-II treated mouse hearts , 2011, Autophagy.

[22]  W. Koch,et al.  Cardiomyocyte lipids impair β-adrenergic receptor function via PKC activation. , 2011, American journal of physiology. Endocrinology and metabolism.

[23]  L. Chin,et al.  Telomere dysfunction induces metabolic and mitochondrial compromise , 2011, Nature.

[24]  A. Samarel,et al.  Protein kinase C-epsilon activation induces mitochondrial dysfunction and fragmentation in renal proximal tubules. , 2011, American journal of physiology. Renal physiology.

[25]  J. Duncan Peroxisome Proliferator Activated Receptor-Alpha (PPARα) and PPAR Gamma Coactivator-1alpha (PGC-1α) Regulation of Cardiac Metabolism in Diabetes , 2011, Pediatric Cardiology.

[26]  Lakshmi Pulakat,et al.  Mitochondrial biogenesis in the metabolic syndrome and cardiovascular disease , 2010, Journal of Molecular Medicine.

[27]  M. Powell,et al.  Mitochondrial dysfunction in the type 2 diabetic heart is associated with alterations in spatially distinct mitochondrial proteomes. , 2010, American journal of physiology. Heart and circulatory physiology.

[28]  E. Abel,et al.  Lipotoxicity in the heart. , 2010, Biochimica et biophysica acta.

[29]  James D Yager,et al.  Regulation of mitochondrial respiratory chain biogenesis by estrogens/estrogen receptors and physiological, pathological and pharmacological implications. , 2009, Biochimica et biophysica acta.

[30]  O. Shirihai,et al.  Mitochondrial Networking Protects β-Cells From Nutrient-Induced Apoptosis , 2009, Diabetes.

[31]  M. MacCoss,et al.  Overexpression of Catalase Targeted to Mitochondria Attenuates Murine Cardiac Aging , 2009, Circulation.

[32]  B. Corkey,et al.  Mitochondrial Networking Protects Beta Cells from Nutrient Induced Apoptosis , 2009 .

[33]  R. Scarpulla Transcriptional paradigms in mammalian mitochondrial biogenesis and function. , 2008, Physiological reviews.

[34]  F. Muller,et al.  High rates of superoxide production in skeletal-muscle mitochondria respiring on both complex I- and complex II-linked substrates. , 2008, The Biochemical journal.

[35]  E. Abel,et al.  Diabetic cardiomyopathy revisited. , 2007, Circulation.

[36]  D. Kelly,et al.  Peroxisome Proliferator–Activated Receptor γ Coactivator-1 (PGC-1) Regulatory Cascade in Cardiac Physiology and Disease , 2007 .

[37]  Stefan Neubauer,et al.  The failing heart--an engine out of fuel. , 2007, The New England journal of medicine.

[38]  D. Kelly,et al.  Peroxisome proliferator-activated receptor gamma coactivator-1 (PGC-1) regulatory cascade in cardiac physiology and disease. , 2007, Circulation.

[39]  Teresa Chen,et al.  Attenuation by metallothionein of early cardiac cell death via suppression of mitochondrial oxidative stress results in a prevention of diabetic cardiomyopathy. , 2006, Journal of the American College of Cardiology.

[40]  E. Abel,et al.  Mitochondrial uncoupling: a key contributor to reduced cardiac efficiency in diabetes. , 2006, Physiology.

[41]  M. Palacín,et al.  Evidence for a Mitochondrial Regulatory Pathway Defined by Peroxisome Proliferator–Activated Receptor-γ Coactivator-1α, Estrogen-Related Receptor-α, and Mitofusin 2 , 2006, Diabetes.

[42]  C. Epstein,et al.  Alterations in mitochondrial function, hydrogen peroxide release and oxidative damage in mouse hind-limb skeletal muscle during aging , 2006, Mechanisms of Ageing and Development.

[43]  N. Metreveli,et al.  Protection of cardiac mitochondria by overexpression of MnSOD reduces diabetic cardiomyopathy. , 2006, Diabetes.

[44]  H. Taegtmeyer,et al.  Association of plasma free fatty acids and left ventricular diastolic function in patients with clinically severe obesity. , 2006, The American journal of clinical nutrition.

[45]  M. Palacín,et al.  Evidence for a mitochondrial regulatory pathway defined by peroxisome proliferator-activated receptor-gamma coactivator-1 alpha, estrogen-related receptor-alpha, and mitofusin 2. , 2006, Diabetes.

[46]  E. Abel,et al.  Reduced Mitochondrial Oxidative Capacity and Increased Mitochondrial Uncoupling Impair Myocardial Energetics in Obesity , 2005, Circulation.

[47]  M. Emond,et al.  Extension of Murine Life Span by Overexpression of Catalase Targeted to Mitochondria , 2005, Science.

[48]  Xianlin Han,et al.  Transgenic Expression of Fatty Acid Transport Protein 1 in the Heart Causes Lipotoxic Cardiomyopathy , 2005, Circulation research.

[49]  G. Noon,et al.  Intramyocardial lipid accumulation in the failing human heart resembles the lipotoxic rat heart , 2004, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[50]  V. Giguère,et al.  Estrogen-Related Receptor α Directs Peroxisome Proliferator-Activated Receptor α Signaling in the Transcriptional Control of Energy Metabolism in Cardiac and Skeletal Muscle , 2004, Molecular and Cellular Biology.

[51]  N. Metreveli,et al.  Catalase protects cardiomyocyte function in models of type 1 and type 2 diabetes. , 2004, Diabetes.

[52]  Xianlin Han,et al.  A critical role for PPARα-mediated lipotoxicity in the pathogenesis of diabetic cardiomyopathy: Modulation by dietary fat content , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[53]  Daniel P. Kelly,et al.  Peroxisome Proliferator-activated Receptor Coactivator-1α (PGC-1α) Coactivates the Cardiac-enriched Nuclear Receptors Estrogen-related Receptor-α and -γ , 2002, The Journal of Biological Chemistry.

[54]  Q. Liang,et al.  Overexpression of metallothionein reduces diabetic cardiomyopathy. , 2002, Diabetes.

[55]  Marc Montminy,et al.  CREB regulates hepatic gluconeogenesis through the coactivator PGC-1 , 2001, Nature.

[56]  S. Eguchi,et al.  Protein kinase C inhibits insulin-induced Akt activation in vascular smooth muscle cells. , 2001, Cellular and molecular biology.

[57]  P. Herrero,et al.  A novel mouse model of lipotoxic cardiomyopathy. , 2001, The Journal of clinical investigation.

[58]  J. Saffitz,et al.  Peroxisome proliferator-activated receptor gamma coactivator-1 promotes cardiac mitochondrial biogenesis. , 2000, The Journal of clinical investigation.

[59]  Rick B. Vega,et al.  The Coactivator PGC-1 Cooperates with Peroxisome Proliferator-Activated Receptor α in Transcriptional Control of Nuclear Genes Encoding Mitochondrial Fatty Acid Oxidation Enzymes , 2000, Molecular and Cellular Biology.