Optimal Orthogonal Portfolios with Conditioning Information

Optimal orthogonal portfolios are a central feature of tests of asset pricing models and are important in active portfolio management problems. The portfolios combine with a benchmark portfolio to form ex ante mean variance efficient portfolios. This paper derives and characterizes optimal orthogonal portfolios in the presence of conditioning information in the form of a set of lagged instruments. In this setting, studied by Hansen and Richard (1987), the conditioning information is used to optimize with respect to the unconditional moments. We present an empirical illustration of the properties of the optimal orthogonal portfolios. From an asset pricing perspective, a standard stock market index is far from efficient when portfolios trade based on lagged interest rates and dividend yields. From an active portfolio management perspective, the example shows that a strong tilt toward bonds improves the efficiency of equity portfolios. Our analytical results provide economic interpretation for test statistics like the Wald test or multivariate F test used in asset pricing research. The empirical applications in this paper make use of regression and maximum likelihood parameter estimation, as well as method of moments estimation. We form maximum likelihood estimates of nonlinear functions as the functions evaluated at the maximum likelihood parameter estimates.

[1]  R. Fischer,et al.  COWLES FOUNDATION FOR RESEARCH IN ECONOMICS , 2002 .

[2]  Robert Tibshirani,et al.  An Introduction to the Bootstrap , 1994 .

[3]  William N. Goetzmann,et al.  Active Portfolio Management , 1999 .

[4]  R. Jagannathan,et al.  Risk Reduction in Large Portfolios: Why Imposing the Wrong Constraints Helps , 2002 .

[5]  Philippe Jorion,et al.  Portfolio Optimization with Tracking-Error Constraints , 2003 .

[6]  Richard O. Michaud The Markowitz Optimization Enigma: Is 'Optimized' Optimal? , 1989 .

[7]  W. Sharpe CAPITAL ASSET PRICES: A THEORY OF MARKET EQUILIBRIUM UNDER CONDITIONS OF RISK* , 1964 .

[8]  R. Stambaugh,et al.  A Mean-Variance Framework for Tests of Asset Pricing Models , 1989 .

[9]  Wayne E. Ferson,et al.  Testing Portfolio Efficiency with Conditioning Information , 2002 .

[10]  Philippe Jorion,et al.  Portfolio Optimization in Practice , 1992 .

[11]  P. Frost,et al.  For better performance , 1988 .

[12]  A. Mackinlay On multivariate tests of the CAPM , 1987 .

[13]  B. Efron Bootstrap Methods: Another Look at the Jackknife , 1979 .

[14]  Richard Roll,et al.  A Critique of the Asset Pricing Theory''s Tests: Part I , 1977 .

[15]  E. Fama A NOTE ON THE MARKET MODEL AND THE TWO‐PARAMETER MODEL , 1973 .

[16]  T. Andersen THE ECONOMETRICS OF FINANCIAL MARKETS , 1998, Econometric Theory.

[17]  Sergei Sarkissian,et al.  Spurious Regressions in Financial Economics? , 2002 .

[18]  Abhay Abhyankar,et al.  Portfolio Efficiency and Discount Factor Bounds with Conditioning Information : An Empirical Study November 2005 , 2005 .

[19]  D. Andrews,et al.  Higher-Order Improvements of the Parametric Bootstrap for Markov Processes , 2001 .

[20]  J. D. Jobson,et al.  Potential performance and tests of portfolio efficiency , 1982 .

[21]  Shmuel Kandel The likelihood ratio test statistic of mean-variance efficiency without a riskless asset , 1984 .

[22]  G. Bekaert,et al.  Conditioning Information and Variance Bounds on Pricing Kernels , 1999 .

[23]  R. Roll,et al.  A Mean/Variance Analysis of Tracking Error , 1992 .

[24]  A. Siegel,et al.  The Efficient Use of Conditioning Information in Portfolios , 2001 .

[25]  K. Athreya BOOTSTRAP OF THE MEAN IN THE INFINITE VARIANCE CASE , 1987 .

[26]  R. Stambaugh,et al.  On correlations and inferences about mean-variance efficiency , 1987 .

[27]  I-Hsuan Ethan Chiang Modern Portfolio Management with Conditioning Information , 2015 .

[28]  R. Stambaugh,et al.  Predictive Regressions , 1999 .

[29]  Stephen A. Ross,et al.  Differential Information and Performance Measurement Using a Security Market Line , 1985 .

[30]  David Hinkley,et al.  Bootstrap Methods: Another Look at the Jackknife , 2008 .

[31]  Richard O. Michaud The Markowitz Optimization Enigma: Is 'Optimized' Optimal? , 1989 .

[32]  M. Kenward,et al.  An Introduction to the Bootstrap , 2007 .

[33]  Fischer Black,et al.  How to Use Security Analysis to Improve Portfolio Selection , 1973 .

[34]  Wayne E. Ferson,et al.  Stochastic Discount Factor Bounds with Conditioning Information , 2001 .

[35]  Jay Shanken,et al.  Multivariate proxies and asset pricing relations: Living with the Roll critique , 1987 .

[36]  Lars Peter Hansen,et al.  THE ROLE OF CONDITIONING INFORMATION IN DEDUCING TESTABLE RESTRICTIONS IMPLIED BY DYNAMIC ASSET PRICING MODELS1 , 1987 .

[37]  Stephen A. Ross,et al.  A Test of the Efficiency of a Given Portfolio , 1989 .

[38]  Richard Roll A note on the geometry of Shanken's CSR T2 test for mean/variance efficiency , 1985 .

[39]  A. Mackinlay,et al.  Multifactor Models Do Not Explain Deviations from the CAPM , 1994 .

[40]  A. Siegel,et al.  Performance of Portfolios Optimized with Estimation Error , 2007, Manag. Sci..

[41]  L. Hansen Large Sample Properties of Generalized Method of Moments Estimators , 1982 .