Coloring random graphs online without creating monochromatic subgraphs

Consider the following generalized notion of graph coloring: a coloring of the vertices of a graph G is valid w.r.t. some given graph F if there is no copy of F in G whose vertices all receive the same color. We study the problem of computing valid colorings of the binomial random graph Gn,p on n vertices with edge probability p = p(n) in the following online setting: the vertices of an initially hidden instance of Gn,p are revealed one by one (together with all edges leading to previously revealed vertices) and have to be colored immediately and irrevocably with one of r available colors. It is known that for any fixed graph F and any fixed integer r ≥ 2 this problem has a threshold po (F, r, n) in the following sense: For any function p(n) = o(po) there is a strategy that a.a.s. (asymptotically almost surely, i.e., with probability tending to 1 as n tends to infinity) finds an r-coloring of Gn,p that is valid w.r.t. F online, and for any function p(n) = ω(po) any online strategy will a.a.s. fail to do so. In this work we establish a general correspondence between this probabilistic problem and a deterministic two-player game in which the random process is replaced by an adversary that is subject to certain restrictions inherited from the random setting. This characterization allows us to compute, for any F and r, a value γ = γ(F, r) such that the threshold of the probabilistic problem is given by po(F, r, n) = n−γ. Our approach yields polynomial-time coloring algorithms that a.a.s. find valid colorings of Gn,p online in the entire regime below the respective thresholds, i.e., for any p(n) = o(n-γ).

[1]  Colin McDiarmid,et al.  On the Chromatic Number of Random Graphs , 1990, Random Struct. Algorithms.

[2]  Pawel Pralat R(3, 4)=17 , 2008, Electron. J. Comb..

[3]  Béla Bollobás,et al.  The chromatic number of random graphs , 1988, Comb..

[4]  Reto Spöhel,et al.  Online vertex colorings of random graphs without monochromatic subgraphs , 2007, SODA '07.

[5]  Reto Spöhel,et al.  Probabilistic One-Player Ramsey Games via Deterministic Two-Player Games , 2012, SIAM J. Discret. Math..

[6]  Jane Butterfield,et al.  On-line Ramsey Theory for Bounded Degree Graphs , 2011, Electron. J. Comb..

[7]  Yoshiharu Kohayakawa,et al.  Ramsey Games Against a One-Armed Bandit , 2003, Comb. Probab. Comput..

[8]  David Conlon,et al.  On-line Ramsey Numbers , 2009, SIAM J. Discret. Math..

[9]  Svante Janson,et al.  Random graphs , 2000, ZOR Methods Model. Oper. Res..

[10]  Béla Bollobás,et al.  Random Graphs , 1985 .

[11]  Andrzej Rucinski,et al.  Ramsey properties of random graphs , 1992, J. Comb. Theory, Ser. B.

[12]  Angelika Steger,et al.  Online Ramsey Games in Random Graphs , 2009, Comb. Probab. Comput..

[13]  E. Friedgut Hunting for sharp thresholds , 2005 .

[14]  Andrzej Rucinski,et al.  Two variants of the size Ramsey number , 2005, Discuss. Math. Graph Theory.

[15]  Michael Krivelevich,et al.  Sharp thresholds for certain Ramsey properties of random graphs , 2000, Random Struct. Algorithms.

[16]  Tomasz Luczak A note on the sharp concentration of the chromatic number of random graphs , 1991, Comb..

[17]  Tomasz Luczak The chromatic number of random graphs , 1991, Comb..

[18]  B. Bollobás Threshold functions for small subgraphs , 1981 .

[19]  Hal A. Kierstead,et al.  Coloring number and on-line Ramsey theory for graphs and hypergraphs , 2009, Comb..

[20]  Béla Bollobás,et al.  Modern Graph Theory , 2002, Graduate Texts in Mathematics.

[21]  Colin McDiarmid,et al.  The t-Improper Chromatic Number of Random Graphs , 2007, Combinatorics, Probability and Computing.

[22]  G. Grimmett,et al.  On colouring random graphs , 1975 .

[23]  Reto Spöhel,et al.  Online vertex-coloring games in random graphs , 2010, Comb..

[24]  D. Achlioptas,et al.  A sharp threshold for k-colorability , 1999 .

[25]  Michael Krivelevich,et al.  Equitable coloring of random graphs , 2009 .

[26]  Uriel Feige,et al.  Zero Knowledge and the Chromatic Number , 1998, J. Comput. Syst. Sci..

[27]  Noga Alon,et al.  The concentration of the chromatic number of random graphs , 1997, Comb..

[28]  Andrzej Ruciński,et al.  Globally sparse vertex-Ramsey graphs , 1994 .

[29]  Pawel Pralat A note on small on-line Ramsey numbers for paths and their generalization , 2008, Australas. J Comb..

[30]  Alan M. Frieze,et al.  Avoiding a giant component , 2001, Random Struct. Algorithms.

[32]  Hal A. Kierstead,et al.  On-line Ramsey Theory , 2004, Electron. J. Comb..

[33]  Konstantinos Panagiotou,et al.  On the chromatic number of random graphs , 2008, J. Comb. Theory, Ser. B.

[34]  Reto Spöhel,et al.  Small subgraphs in random graphs and the power of multiple choices , 2011, J. Comb. Theory, Ser. B.

[35]  Jane Butterfield,et al.  Online Ramsey games for triangles in random graphs , 2010, Discret. Math..

[36]  D. W. MATULA Expose-and-merge exploration and the chromatic number of a random graph , 1987, Comb..

[37]  Amin Coja-Oghlan,et al.  Algorithmic Barriers from Phase Transitions , 2008, 2008 49th Annual IEEE Symposium on Foundations of Computer Science.

[38]  Benny Sudakov,et al.  On the Strong Chromatic Number of Random Graphs , 2007, Combinatorics, Probability and Computing.

[39]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[40]  W. T. Gowers,et al.  RANDOM GRAPHS (Wiley Interscience Series in Discrete Mathematics and Optimization) , 2001 .

[41]  Tommy R. Jensen,et al.  Graph Coloring Problems , 1994 .

[42]  Hal A. Kierstead,et al.  On-line Ramsey Numbers for Paths and Stars , 2008, Discret. Math. Theor. Comput. Sci..

[43]  Angelika Steger,et al.  Upper Bounds for Online Ramsey Games in Random Graphs , 2009, Comb. Probab. Comput..

[44]  József Beck,et al.  There is no fast method for finding monochromatic complete subgraphs , 1983, J. Comb. Theory, Ser. B.