Coloring random graphs online without creating monochromatic subgraphs
暂无分享,去创建一个
[1] Colin McDiarmid,et al. On the Chromatic Number of Random Graphs , 1990, Random Struct. Algorithms.
[2] Pawel Pralat. R(3, 4)=17 , 2008, Electron. J. Comb..
[3] Béla Bollobás,et al. The chromatic number of random graphs , 1988, Comb..
[4] Reto Spöhel,et al. Online vertex colorings of random graphs without monochromatic subgraphs , 2007, SODA '07.
[5] Reto Spöhel,et al. Probabilistic One-Player Ramsey Games via Deterministic Two-Player Games , 2012, SIAM J. Discret. Math..
[6] Jane Butterfield,et al. On-line Ramsey Theory for Bounded Degree Graphs , 2011, Electron. J. Comb..
[7] Yoshiharu Kohayakawa,et al. Ramsey Games Against a One-Armed Bandit , 2003, Comb. Probab. Comput..
[8] David Conlon,et al. On-line Ramsey Numbers , 2009, SIAM J. Discret. Math..
[9] Svante Janson,et al. Random graphs , 2000, ZOR Methods Model. Oper. Res..
[10] Béla Bollobás,et al. Random Graphs , 1985 .
[11] Andrzej Rucinski,et al. Ramsey properties of random graphs , 1992, J. Comb. Theory, Ser. B.
[12] Angelika Steger,et al. Online Ramsey Games in Random Graphs , 2009, Comb. Probab. Comput..
[13] E. Friedgut. Hunting for sharp thresholds , 2005 .
[14] Andrzej Rucinski,et al. Two variants of the size Ramsey number , 2005, Discuss. Math. Graph Theory.
[15] Michael Krivelevich,et al. Sharp thresholds for certain Ramsey properties of random graphs , 2000, Random Struct. Algorithms.
[16] Tomasz Luczak. A note on the sharp concentration of the chromatic number of random graphs , 1991, Comb..
[17] Tomasz Luczak. The chromatic number of random graphs , 1991, Comb..
[18] B. Bollobás. Threshold functions for small subgraphs , 1981 .
[19] Hal A. Kierstead,et al. Coloring number and on-line Ramsey theory for graphs and hypergraphs , 2009, Comb..
[20] Béla Bollobás,et al. Modern Graph Theory , 2002, Graduate Texts in Mathematics.
[21] Colin McDiarmid,et al. The t-Improper Chromatic Number of Random Graphs , 2007, Combinatorics, Probability and Computing.
[22] G. Grimmett,et al. On colouring random graphs , 1975 .
[23] Reto Spöhel,et al. Online vertex-coloring games in random graphs , 2010, Comb..
[24] D. Achlioptas,et al. A sharp threshold for k-colorability , 1999 .
[25] Michael Krivelevich,et al. Equitable coloring of random graphs , 2009 .
[26] Uriel Feige,et al. Zero Knowledge and the Chromatic Number , 1998, J. Comput. Syst. Sci..
[27] Noga Alon,et al. The concentration of the chromatic number of random graphs , 1997, Comb..
[28] Andrzej Ruciński,et al. Globally sparse vertex-Ramsey graphs , 1994 .
[29] Pawel Pralat. A note on small on-line Ramsey numbers for paths and their generalization , 2008, Australas. J Comb..
[30] Alan M. Frieze,et al. Avoiding a giant component , 2001, Random Struct. Algorithms.
[32] Hal A. Kierstead,et al. On-line Ramsey Theory , 2004, Electron. J. Comb..
[33] Konstantinos Panagiotou,et al. On the chromatic number of random graphs , 2008, J. Comb. Theory, Ser. B.
[34] Reto Spöhel,et al. Small subgraphs in random graphs and the power of multiple choices , 2011, J. Comb. Theory, Ser. B.
[35] Jane Butterfield,et al. Online Ramsey games for triangles in random graphs , 2010, Discret. Math..
[36] D. W. MATULA. Expose-and-merge exploration and the chromatic number of a random graph , 1987, Comb..
[37] Amin Coja-Oghlan,et al. Algorithmic Barriers from Phase Transitions , 2008, 2008 49th Annual IEEE Symposium on Foundations of Computer Science.
[38] Benny Sudakov,et al. On the Strong Chromatic Number of Random Graphs , 2007, Combinatorics, Probability and Computing.
[39] David S. Johnson,et al. Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .
[40] W. T. Gowers,et al. RANDOM GRAPHS (Wiley Interscience Series in Discrete Mathematics and Optimization) , 2001 .
[41] Tommy R. Jensen,et al. Graph Coloring Problems , 1994 .
[42] Hal A. Kierstead,et al. On-line Ramsey Numbers for Paths and Stars , 2008, Discret. Math. Theor. Comput. Sci..
[43] Angelika Steger,et al. Upper Bounds for Online Ramsey Games in Random Graphs , 2009, Comb. Probab. Comput..
[44] József Beck,et al. There is no fast method for finding monochromatic complete subgraphs , 1983, J. Comb. Theory, Ser. B.