Creating realistic animations using video

Generating realistic animations of passive dynamic systems such as rigid bodies, cloth and fluids is an important problem in computer graphics. Although several techniques for animating these phenomena have been developed, achieving the level of realism exhibited by objects in the real world has proved to be incredibly hard. This thesis presents two techniques for using video to create realistic animations of phenomena such as rigid bodies, cloth, waterfalls, streams, smoke and fire. The first technique, inverse simulation, estimates the parameters of physical simulations from video. The behavior of a physical simulator is governed by a set of parameters, typically specified by the animator. However, directly tuning the physical parameters of complex simulations like rigid bodies or cloth to achieve a desired motion is often cumbersome and nonintuitive. The inverse simulation framework uses optimization to automatically estimate the simulation parameters from video sequences obtained from simple calibration experiments (e.g., throwing a rigid body, waving a swatch of fabric). To demonstrate the power of this approach, we apply this framework to find the parameters for tumbling rigid bodies and for four different fabrics. The second technique presents a video editing framework for creating photorealistic animations of natural phenomena such as waterfalls by directly editing reference video footage. Our algorithm analyzes the dynamics and appearance of textured particles in the input video along user-specified flow lines, and synthesizes seamless infinite video by continuously generating particles along the flow lines. The user can then edit the video by manipulating flow lines from the original footage. The algorithm is simple to implement and use. We applied this technique to perform significant edits to the video. For example, we were able to change the terrain of a waterfall, add obstacles along the flow and add wind to smoke and flames, to demonstrate the editing capability of our approach. The results from these two techniques demonstrate the effectiveness of using video to improve the realism of computer animations. We hope that the methods developed in this thesis provide useful insights into how realistic animations for other domains might be designed.

[1]  F. T. Peirce The geometry of cloth structure , 1937 .

[2]  D. Hubel,et al.  Receptive fields and functional architecture of monkey striate cortex , 1968, The Journal of physiology.

[3]  川端 季雄,et al.  The standardization and analysis of hand evaluation. , 1975 .

[4]  C. Peskin Numerical analysis of blood flow in the heart , 1977 .

[5]  F. Thomas,et al.  Disney Animation: The Illusion of Life , 1981 .

[6]  Philip E. Gill,et al.  Practical optimization , 1981 .

[7]  S. Liberty,et al.  Linear Systems , 2010, Scientific Parallel Computing.

[8]  R. L. Valois,et al.  The orientation and direction selectivity of cells in macaque visual cortex , 1982, Vision Research.

[9]  William T. Reeves,et al.  Particle systems—a technique for modeling a class of fuzzy objects , 1983, International Conference on Computer Graphics and Interactive Techniques.

[10]  C. Frohlich Aerodynamic drag crisis and its possible effect on the flight of baseballs , 1984 .

[11]  Ricki Blau,et al.  Approximate and probabilistic algorithms for shading and rendering structured particle systems , 1985, SIGGRAPH.

[12]  Craig W. Reynolds Flocks, herds, and schools: a distributed behavioral model , 1987, SIGGRAPH.

[13]  William H. Press,et al.  Numerical Recipes: The Art of Scientific Computing , 1987 .

[14]  Pradeep K. Khosla,et al.  Estimation of Robot Dynamics Parameters: Theory and Application , 1987 .

[15]  D J Field,et al.  Relations between the statistics of natural images and the response properties of cortical cells. , 1987, Journal of the Optical Society of America. A, Optics and image science.

[16]  John C. Platt,et al.  Elastically deformable models , 1987, SIGGRAPH.

[17]  Demetri Terzopoulos,et al.  Constraints on Deformable Models: Recovering 3D Shape and Nonrigid Motion , 1988, Artif. Intell..

[18]  Andrew P. Witkin,et al.  Spacetime constraints , 1988, SIGGRAPH.

[19]  D. Acheson Elementary Fluid Dynamics , 1990 .

[20]  Karl Sims,et al.  Particle animation and rendering using data parallel computation , 1990, SIGGRAPH.

[21]  R. Chellappa,et al.  Passive Navigation in a partially known environment , 1991, Proceedings of the IEEE Workshop on Visual Motion.

[22]  J. Schick,et al.  Simultaneous estimation of 3D shape and motion of objects by computer vision , 1991, Proceedings of the IEEE Workshop on Visual Motion.

[23]  Edward H. Adelson,et al.  The Design and Use of Steerable Filters , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[24]  Jakub Wejchert,et al.  Animation aerodynamics , 1991, SIGGRAPH.

[25]  Alex Pentland,et al.  Generalized implicit functions for computer graphics , 1991, SIGGRAPH.

[26]  Alex Pentland,et al.  Recovery of Nonrigid Motion and Structure , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[27]  Dimitris N. Metaxas,et al.  Shape and Nonrigid Motion Estimation Through Physics-Based Synthesis , 1993, IEEE Trans. Pattern Anal. Mach. Intell..

[28]  I. Ohzawa,et al.  Spatiotemporal organization of simple-cell receptive fields in the cat's striate cortex. II. Linearity of temporal and spatial summation. , 1993, Journal of neurophysiology.

[29]  Chris Harris,et al.  Tracking with rigid models , 1993 .

[30]  David E. Breen,et al.  Predicting the drape of woven cloth using interacting particles , 1994, SIGGRAPH.

[31]  David Baraff,et al.  Fast contact force computation for nonpenetrating rigid bodies , 1994, SIGGRAPH.

[32]  Nadia Magnenat-Thalmann,et al.  Efficient self‐collision detection on smoothly discretized surface animations using geometrical shape regularity , 1994, Comput. Graph. Forum.

[33]  Robert F. Stengel,et al.  Optimal Control and Estimation , 1994 .

[34]  David J. Field,et al.  What Is the Goal of Sensory Coding? , 1994, Neural Computation.

[35]  David C. Brogan,et al.  Animating human athletics , 1995, SIGGRAPH.

[36]  Xavier Provot,et al.  Deformation Constraints in a Mass-Spring Model to Describe Rigid Cloth Behavior , 1995 .

[37]  Nadia Magnenat-Thalmann,et al.  Versatile and efficient techniques for simulating cloth and other deformable objects , 1995, SIGGRAPH.

[38]  B. Ghosh,et al.  A Perspective Theory for Motion and Shape Estimation in Machine Vision , 1995 .

[39]  John F. Canny,et al.  Impulse-based simulation of rigid bodies , 1995, I3D '95.

[40]  Daniel E. Koditschek,et al.  An active visual estimator for dexterous manipulation , 1996, IEEE Trans. Robotics Autom..

[41]  David E. Breen,et al.  Towards simulating cloth dynamics using interacting particles , 1996 .

[42]  Michael J. Black,et al.  The Robust Estimation of Multiple Motions: Parametric and Piecewise-Smooth Flow Fields , 1996, Comput. Vis. Image Underst..

[43]  Tomas Akenine-Möller,et al.  A Fast Triangle-Triangle Intersection Test , 1997, J. Graphics, GPU, & Game Tools.

[44]  Christoph Bregler,et al.  Video Rewrite: Driving Visual Speech with Audio , 1997, SIGGRAPH.

[45]  Christoph Bregler,et al.  Learning and recognizing human dynamics in video sequences , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[46]  Xavier Provot,et al.  Collision and self-collision handling in cloth model dedicated to design garments , 1997, Computer Animation and Simulation.

[47]  Emanuele Trucco,et al.  Introductory techniques for 3-D computer vision , 1998 .

[48]  David A. Forsyth,et al.  Shading primitives: finding folds and shallow grooves , 1998, Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271).

[49]  Uri M. Ascher,et al.  Computer methods for ordinary differential equations and differential-algebraic equations , 1998 .

[50]  Andrew P. Witkin,et al.  Large steps in cloth simulation , 1998, SIGGRAPH.

[51]  D. Ruderman,et al.  Independent component analysis of natural image sequences yields spatio-temporal filters similar to simple cells in primary visual cortex , 1998, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[52]  Jos Stam,et al.  Stable fluids , 1999, SIGGRAPH.

[53]  Olivier D. Faugeras,et al.  3D articulated models and multi-view tracking with silhouettes , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[54]  O. Faugeras,et al.  The Geometry of Multiple Images , 1999 .

[55]  Mark W. Spong,et al.  Vision-based control of an air hockey playing robot , 1999 .

[56]  Steven M. Seitz,et al.  Interactive manipulation of rigid body simulations , 2000, SIGGRAPH.

[57]  Jessica K. Hodgins,et al.  Combining Active and Passive Simulations for Secondary Motion , 2000, IEEE Computer Graphics and Applications.

[58]  David E. Breen,et al.  Cloth modeling and animation , 2000 .

[59]  Pradeep K. Khosla,et al.  Motion detection and segmentation using image mosaics , 2000, 2000 IEEE International Conference on Multimedia and Expo. ICME2000. Proceedings. Latest Advances in the Fast Changing World of Multimedia (Cat. No.00TH8532).

[60]  Christopher Richard Wren,et al.  Understanding expressive action , 2000 .

[61]  Richard Szeliski,et al.  Video textures , 2000, SIGGRAPH.

[62]  Li Ling,et al.  Aerodynamic effects , 2000 .

[63]  Marc Levoy,et al.  Fast texture synthesis using tree-structured vector quantization , 2000, SIGGRAPH.

[64]  Nadia Magnenat-Thalmann,et al.  Accurate collision response on polygonal meshes , 2000, Proceedings Computer Animation 2000.

[65]  Bernhard P. Wrobel,et al.  Multiple View Geometry in Computer Vision , 2001 .

[66]  Ronald Fedkiw,et al.  Visual simulation of smoke , 2001, SIGGRAPH.

[67]  Kiriakos N. Kutulakos,et al.  Multi-view scene capture by surfel sampling: from video streams to non-rigid 3D motion, shape and reflectance , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[68]  Lorenzo Torresani,et al.  Tracking and modeling non-rigid objects with rank constraints , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[69]  David Salesin,et al.  Image Analogies , 2001, SIGGRAPH.

[70]  Norman I. Badler,et al.  Collision resolutions in cloth simulation , 2001, Proceedings Computer Animation 2001. Fourteenth Conference on Computer Animation (Cat. No.01TH8596).

[71]  Tomas Akenine-Möller,et al.  Collision Detection for Continuously Deforming Bodies , 2001, Eurographics.

[72]  Ronald Fedkiw,et al.  Practical animation of liquids , 2001, SIGGRAPH.

[73]  D. Scharstein,et al.  A Taxonomy and Evaluation of Dense Two-Frame Stereo Correspondence Algorithms , 2001, Proceedings IEEE Workshop on Stereo and Multi-Baseline Vision (SMBV 2001).

[74]  Alexei A. Efros,et al.  Image quilting for texture synthesis and transfer , 2001, SIGGRAPH.

[75]  Gail D. Baura,et al.  Nonlinear System Identification , 2002 .

[76]  Duc Quang Nguyen,et al.  Physically based modeling and animation of fire , 2002, ACM Trans. Graph..

[77]  Statistical Estimation of Fluid Flow Fields , 2002 .

[78]  David Salesin,et al.  Video matting of complex scenes , 2002, SIGGRAPH.

[79]  Timothy John Lahey,et al.  Modelling Hysteresis in the Bending of Fabrics , 2002 .

[80]  Irfan A. Essa,et al.  Controlled animation of video sprites , 2002, SCA '02.

[81]  Kwang-Jin Choi,et al.  Stable but responsive cloth , 2002, SIGGRAPH 2002.

[82]  Stefano Soatto,et al.  Editable dynamic textures , 2002, SIGGRAPH '02.

[83]  C. Karen Liu,et al.  Synthesis of complex dynamic character motion from simple animations , 2002, ACM Trans. Graph..

[84]  Li Zhang,et al.  Rapid shape acquisition using color structured light and multi-pass dynamic programming , 2002, Proceedings. First International Symposium on 3D Data Processing Visualization and Transmission.

[85]  Kiriakos N. Kutulakos,et al.  Photo-consistent 3D fire by Flame-Sheet decomposition , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[86]  Irfan A. Essa,et al.  Graphcut textures: image and video synthesis using graph cuts , 2003, ACM Trans. Graph..

[87]  U. Hoppe,et al.  Vocal fold vibration irregularities caused by different types of laryngeal asymmetry , 2003, European Archives of Oto-Rhino-Laryngology.

[88]  Andrew P. Witkin,et al.  Untangling cloth , 2003, ACM Trans. Graph..

[89]  Ronald Fedkiw,et al.  Nonconvex rigid bodies with stacking , 2003, ACM Trans. Graph..

[90]  Steven M. Seitz,et al.  Motion sketching for control of rigid-body simulations , 2003, TOGS.

[91]  Adrien Treuille,et al.  Keyframe control of smoke simulations , 2003, ACM Trans. Graph..

[92]  Ronald Fedkiw,et al.  Simulation of clothing with folds and wrinkles , 2003, SCA '03.

[93]  Dani Lischinski,et al.  Target-driven smoke animation , 2004, ACM Trans. Graph..

[94]  Adrien Treuille,et al.  Fluid control using the adjoint method , 2004, ACM Trans. Graph..

[95]  Stella X. Yu Segmentation using multiscale cues , 2004, Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004..

[96]  Takeo Kanade,et al.  Shape and motion from image streams under orthography: a factorization method , 1992, International Journal of Computer Vision.

[97]  Stefano Soatto,et al.  Dynamic Textures , 2003, International Journal of Computer Vision.

[98]  Ronald Fedkiw,et al.  Robust treatment of collisions, contact and friction for cloth animation , 2002, SIGGRAPH Courses.