A continued‐fraction‐based high‐order transmitting boundary for wave propagation in unbounded domains of arbitrary geometry

A high-order local transmitting boundary is developed to model the propagation of elastic waves in unbounded domains. This transmitting boundary is applicable to scalar and vector waves, to unbounded domains of arbitrary geometry and to anisotropic materials. The formulation is based on a continued-fraction solution of the dynamic-stiffness matrix of an unbounded domain. The coefficient matrices of the continued fraction are determined recursively from the scaled boundary finite element equation in dynamic stiffness. The solution converges rapidly over the whole frequency range as the order of the continued fraction increases. Using the continued-fraction solution and introducing auxiliary variables, a high-order local transmitting boundary is formulated as an equation of motion with symmetric and frequency-independent coefficient matrices. It can be coupled seamlessly with finite elements. Standard procedures in structural dynamics are directly applicable for evaluating the response in the frequency and time domains. Analytical and numerical examples demonstrate the high rate of convergence and efficiency of this high-order local transmitting boundary. Copyright © 2007 John Wiley & Sons, Ltd.

[1]  William H. Press,et al.  Numerical recipes , 1990 .

[2]  J. Chisholm,et al.  Algorithms for the ?-algebra of electromagnetic form factors1 , 1971 .

[3]  Chongmin Song,et al.  Transient analysis of wave propagation in non‐homogeneous elastic unbounded domains by using the scaled boundary finite‐element method , 2006 .

[4]  John P. Wolf,et al.  The scaled boundary finite-element method – a primer: solution procedures , 2000 .

[5]  P. Ruge,et al.  Time‐domain analysis of unbounded media using mixed‐variable formulations , 2001 .

[6]  P. Möller High‐order hierarchical A‐ and L‐stable integration methods , 1993 .

[7]  Jean-Pierre Berenger,et al.  A perfectly matched layer for the absorption of electromagnetic waves , 1994 .

[8]  John P. Wolf,et al.  Global lumped‐parameter model with physical representation for unbounded medium , 1995 .

[9]  Lonny L. Thompson,et al.  Accurate radiation boundary conditions for the time‐dependent wave equation on unbounded domains , 2000 .

[10]  A. Bayliss,et al.  Radiation boundary conditions for wave-like equations , 1980 .

[11]  D. Givoli Non-reflecting boundary conditions , 1991 .

[12]  Marcus J. Grote,et al.  Nonreflecting Boundary Conditions for Maxwell's Equations , 1998 .

[13]  R. Astley Infinite elements for wave problems: a review of current formulations and an assessment of accuracy , 2000 .

[14]  Chongmin Song,et al.  The scaled boundary finite-element method—alias consistent infinitesimal finite-element cell method—for elastodynamics , 1997 .

[15]  Chongmin Song,et al.  Development of a fundamental‐solution‐less boundary element method for exterior wave problems , 2006 .

[16]  Chongmin Song,et al.  Time‐harmonic response of non‐homogeneous elastic unbounded domains using the scaled boundary finite‐element method , 2006 .

[17]  John L. Tassoulas,et al.  CONTINUED-FRACTION ABSORBING BOUNDARY CONDITIONS FOR THE WAVE EQUATION , 2000 .

[18]  J. Wolf Dynamic soil-structure interaction , 1985 .

[19]  Marcus J. Grote,et al.  Exact Nonreflecting Boundary Condition For Elastic Waves , 2000, SIAM J. Appl. Math..

[20]  J. Keller,et al.  Exact non-reflecting boundary conditions , 1989 .

[21]  A. Majda,et al.  Radiation boundary conditions for acoustic and elastic wave calculations , 1979 .

[22]  M. Gunzburger,et al.  Boundary conditions for the numerical solution of elliptic equations in exterior regions , 1982 .

[23]  Xiong Zhang,et al.  Three-dimensional dynamic soil-structure interaction analysis in the time domain , 1999 .

[24]  Dan Givoli,et al.  FINITE ELEMENT FORMULATION WITH HIGH-ORDER ABSORBING BOUNDARY CONDITIONS FOR TIME-DEPENDENT WAVES , 2006 .

[25]  Dan Givoli,et al.  An optimal high‐order non‐reflecting finite element scheme for wave scattering problems , 2002 .

[26]  L. Lehmann,et al.  Application of hierarchical matrices to the simulation of wave propagation in fluids , 2005 .

[27]  Chuhan Zhang,et al.  A coupling procedure of FE and SBFE for soil–structure interaction in the time domain , 2004 .

[28]  Dimitri E. Beskos,et al.  Boundary Element Methods in Dynamic Analysis , 1987 .

[29]  S. Krenk Unified formulation of radiation conditions for the wave equation , 2002 .

[30]  Chongmin Song,et al.  A boundary condition in Padé series for frequency‐domain solution of wave propagation in unbounded domains , 2007 .

[31]  Marcus J. Grote,et al.  Exact Nonreflecting Boundary Conditions for the Time Dependent Wave Equation , 1995, SIAM J. Appl. Math..

[32]  D. Givoli High-order local non-reflecting boundary conditions: a review☆ , 2004 .

[33]  D. Givoli,et al.  High-order non-reflecting boundary scheme for time-dependent waves , 2003 .

[34]  Thomas Hagstrom,et al.  A formulation of asymptotic and exact boundary conditions using local operators , 1998 .

[35]  J. Wolf,et al.  Finite-element modelling of unbounded media , 1996 .

[36]  Dan Givoli,et al.  High‐order Higdon‐like boundary conditions for exterior transient wave problems , 2005 .

[37]  J. Wolf Soil-structure-interaction analysis in time domain , 1988 .

[38]  Eduardo Kausel,et al.  Local transmitting boundaries , 1988 .

[39]  J. Lysmer,et al.  Finite Dynamic Model for Infinite Media , 1969 .

[40]  M. Guddati,et al.  Continued fraction absorbing boundary conditions for convex polygonal domains , 2006 .

[41]  I. Harari,et al.  Analytical study of the effect of wave number on the performance of local absorbing boundary conditions for acoustic scattering , 2004 .

[42]  Xavier Antoine,et al.  Numerical accuracy of a Padé‐type non‐reflecting boundary condition for the finite element solution of acoustic scattering problems at high‐frequency , 2005 .

[43]  S. C. Fan,et al.  Dynamic Fluid-Structure Interaction Analysis Using Boundary Finite Element Method–Finite Element Method , 2005 .

[44]  J. Wolf,et al.  The scaled boundary finite-element method – a primer: derivations , 2000 .

[45]  R.K.N.D. Rajapakse,et al.  Dynamics of rigid strip foundations embedded in orthotropic elastic soils , 1991 .

[46]  Eduardo Kausel,et al.  Dynamic Analysis of Footings on Layered Media , 1975 .

[47]  Anil K. Chopra,et al.  Dynamics of Structures: Theory and Applications to Earthquake Engineering , 1995 .

[48]  Lonny L. Thompson,et al.  Accurate radiation boundary conditions for the two-dimensional wave equation on unbounded domains , 2001 .

[49]  R. Higdon Absorbing boundary conditions for difference approximations to the multi-dimensional wave equation , 1986 .

[50]  W. S. Hall,et al.  Boundary element methods for soil-structure interaction , 2004 .

[51]  S. Tsynkov Numerical solution of problems on unbounded domains. a review , 1998 .

[52]  Chongmin Song,et al.  Dynamic analysis of unbounded domains by a reduced set of base functions , 2006 .

[53]  Thomas Hagstrom,et al.  A new auxiliary variable formulation of high-order local radiation boundary conditions: corner compatibility conditions and extensions to first-order systems , 2004 .