ASYMMETRIES, BREAKS, AND LONG-RANGE DEPENDENCE: AN ESTIMATION FRAMEWORK FOR DAILY REALIZED VOLATILITY

We study the simultaneous occurrence of long memory and nonlinear effects, such as structural breaks and thresholds, in autoregressive moving average (ARMA) time series models and apply our modeling framework to series of daily realized volatility. Asymptotic theory for the quasi-maximum likelihood estimator is developed and a sequence of model specification tests is described. Our framework allows for general nonlinear functions, including smoothly changing intercepts. The theoretical results in the paper can be applied to any series with long memory and nonlinearity. We apply the methodology to realized volatility of individual stocks of the Dow Jones Industrial Average during the period 1995 to 2005. We find strong evidence of nonlinear effects and explore different specifications of the model framework. A forecasting exercise demonstrates that allowing for nonlinearities in long memory models yields significant performance gains.

[1]  Francis X. Dieobold Modeling The persistence Of Conditional Variances: A Comment , 1986 .

[2]  Jushan Bai,et al.  A NOTE ON SPURIOUS BREAK , 1998, Econometric Theory.

[3]  M. Medeiros,et al.  Chapter 8 Estimating and Forecasting GARCH Models in the Presence of Structural Breaks and Regime Switches , 2008 .

[4]  Stephen Gray Modeling the Conditional Distribution of Interest Rates as a Regime-Switching Process , 1996 .

[5]  A simple linear time series model with misleading nonlinear properties , 1999 .

[6]  T. Bollerslev,et al.  Continuous-Time Models, Realized Volatilities, and Testable Distributional Implications for Daily Stock Returns , 2007 .

[7]  Campbell R. Harvey The Specification of Conditional Expectations , 1991 .

[8]  Daniel B. Nelson CONDITIONAL HETEROSKEDASTICITY IN ASSET RETURNS: A NEW APPROACH , 1991 .

[9]  T. Teräsvirta,et al.  Stylized Facts of Financial Time Series and Three Popular Models of Volatility , 2004 .

[10]  M. Medeiros,et al.  Building Neural Network Models for Time Series: A Statistical Approach , 2002 .

[11]  Timo Teräsvirta,et al.  Modelling economic high-frequency time series , 1999 .

[12]  Wai Keung Li,et al.  On a threshold autoregression with conditional heteroscedastic variances , 1997 .

[13]  P. Billingsley,et al.  Convergence of Probability Measures , 1969 .

[14]  D. Andrews,et al.  Nonlinear Econometric Models with Deterministically Trending Variables , 1995 .

[15]  T. Mikosch,et al.  Nonstationarities in Financial Time Series, the Long-Range Dependence, and the IGARCH Effects , 2004, Review of Economics and Statistics.

[16]  Aaron Smith,et al.  Level Shifts and the Illusion of Long Memory in Economic Time Series , 2004 .

[17]  M. Dacorogna,et al.  Volatilities of different time resolutions — Analyzing the dynamics of market components , 1997 .

[18]  Marcelo C. Medeiros,et al.  Diagnostic Checking in a Flexible Nonlinear Time Series Model , 2003 .

[19]  Christopher G. Lamoureux,et al.  Persistence in Variance, Structural Change, and the GARCH Model , 1990 .

[20]  Timo Teräsvirta,et al.  Modelling economic high-frequency time series with STAR-STGARCH models , 1998 .

[21]  Pentti Saikkonen,et al.  COINTEGRATING SMOOTH TRANSITION REGRESSIONS , 2004, Econometric Theory.

[22]  George Kapetanios,et al.  Nonlinear models for strongly dependent processes with financial applications , 2008 .

[23]  Eric Hillebrand Neglecting parameter changes in GARCH models , 2005 .

[24]  C. Granger Long memory relationships and the aggregation of dynamic models , 1980 .

[25]  Timo Teräsvirta,et al.  Testing the adequacy of smooth transition autoregressive models , 1996 .

[26]  Stephen L Taylor,et al.  Modelling Financial Time Series , 1987 .

[27]  George Kapetanios,et al.  Testing for Neglected Nonlinearity in Long-Memory Models , 2007 .

[28]  Fallaw Sowell Maximum likelihood estimation of stationary univariate fractionally integrated time series models , 1992 .

[29]  Bruce E. Hansen,et al.  Inference When a Nuisance Parameter Is Not Identified under the Null Hypothesis , 1996 .

[30]  M. Medeiros,et al.  Asymmetric effects and long memory in the volatility of Dow Jones stocks , 2009 .

[31]  Tim Bollerslev,et al.  Roughing it Up: Including Jump Components in the Measurement, Modeling and Forecasting of Return Volatility , 2007 .

[32]  N. Shephard,et al.  Econometric analysis of realized volatility and its use in estimating stochastic volatility models , 2002 .

[33]  Andrea Beltratti,et al.  Structural Change and Long Range Dependence in Volatility of Exchange Rates: Either, Neither or Both? , 2004 .

[34]  E. Ruiz,et al.  Persistence and Kurtosis in GARCH and Stochastic Volatility Models , 2004 .

[35]  James D. Hamilton,et al.  Autoregressive conditional heteroskedasticity and changes in regime , 1994 .

[36]  Andrew J. Patton,et al.  Volatility Forecast Evaluation and Comparison Using Imperfect Volatility Proxies , 2005 .

[37]  S. Chib,et al.  Multivariate stochastic volatility , 2009 .

[38]  L. Glosten,et al.  Market Microstructure: A Survey of Microfoundations, Empirical Results, and Policy Implications , 2005 .

[39]  C. Granger,et al.  A long memory property of stock market returns and a new model , 1993 .

[40]  Chih-Chiang Hsu,et al.  Change point estimation in regressions with I(d) variables , 2001 .

[41]  Timo Teräsvirta,et al.  POWER OF THE NEURAL NETWORK LINEARITY TEST , 1993 .

[42]  D. Andrews Generic Uniform Convergence , 1992, Econometric Theory.

[43]  Jun Cai A Markov Model of Switching-Regime ARCH , 1994 .

[44]  E. Fama,et al.  Permanent and Temporary Components of Stock Prices , 1988, Journal of Political Economy.

[45]  Terrence L. Fine,et al.  Feedforward Neural Network Methodology , 1999, Information Science and Statistics.

[46]  J. Zakoian,et al.  Threshold Arch Models and Asymmetries in Volatility , 1993 .

[47]  M. McAleer Automated Inference and Learning in Modelling Financial Volatility * , 2004 .

[48]  Dick J. C. van Dijk,et al.  Modeling and Forecasting S&P 500 Volatility: Long Memory, Structural Breaks and Nonlinearity , 2004 .

[49]  P. Hansen A Test for Superior Predictive Ability , 2005 .

[50]  Francis X. Diebold,et al.  Modeling and Forecasting Realized Volatility , 2001 .

[51]  R. C. Merton,et al.  On Estimating the Expected Return on the Market: An Exploratory Investigation , 1980 .

[52]  James Davidson,et al.  Generating Schemes for Long Memory Processes: Regimes, Aggregation and Linearity , 2005 .

[53]  T. Bollerslev,et al.  A CONDITIONALLY HETEROSKEDASTIC TIME SERIES MODEL FOR SPECULATIVE PRICES AND RATES OF RETURN , 1987 .

[54]  Philip Hans Franses,et al.  A nonlinear long memory model, with an application to US unemployment ☆ , 2002 .

[55]  Alex W. H. Chan Merton, Robert C. , 2010 .

[56]  Ananth N. Madhavan,et al.  Market Microstructure: A Survey , 2000 .

[57]  Timo Teräsvirta,et al.  A simple nonlinear time series model with misleading linear properties , 1999 .

[58]  Richard T. Baillie,et al.  Small sample bias in conditional sum-of-squares estimators of fractionally integrated ARMA models , 1993 .

[59]  N. Meddahi,et al.  A theoretical comparison between integrated and realized volatility , 2002 .

[60]  Neil Shephard,et al.  Designing Realised Kernels to Measure the Ex-Post Variation of Equity Prices in the Presence of Noise , 2008 .

[61]  M. McAleer,et al.  Asymmetric Multivariate Stochastic Volatility , 2006 .

[62]  Fulvio Corsi,et al.  A Simple Long Memory Model of Realized Volatility , 2004 .

[63]  Piotr Kokoszka,et al.  GARCH processes: structure and estimation , 2003 .

[64]  T. Teräsvirta Specification, Estimation, and Evaluation of Smooth Transition Autoregressive Models , 1994 .

[65]  Marcelo C. Medeiros,et al.  MODELING MULTIPLE REGIMES IN FINANCIAL VOLATILITY WITH A FLEXIBLE COEFFICIENT GARCH(1,1) MODEL , 2009, Econometric Theory.

[66]  Fulvio Corsi,et al.  A Simple Approximate Long-Memory Model of Realized Volatility , 2008 .

[67]  F. Diebold,et al.  Long Memory and Regime Switching , 2000 .

[68]  M. Medeiros,et al.  A multiple regime smooth transition Heterogeneous Autoregressive model for long memory and asymmetries , 2008 .

[69]  J. Davidson Stochastic Limit Theory , 1994 .

[70]  Jun Yu,et al.  On Leverage in a Stochastic Volatility Model , 2005 .

[71]  P. Perron,et al.  The Great Crash, The Oil Price Shock And The Unit Root Hypothesis , 1989 .

[72]  C. Granger,et al.  Occasional structural breaks and long memory with an application to the S&P 500 absolute stock returns , 2004 .

[73]  Ignacio N. Lobato,et al.  Real and Spurious Long-Memory Properties of Stock-Market Data , 1996 .

[74]  J. Geweke,et al.  THE ESTIMATION AND APPLICATION OF LONG MEMORY TIME SERIES MODELS , 1983 .

[75]  John Y. Campbell,et al.  No News is Good News: An Asymmetric Model of Changing Volatility in Stock Returns , 1991 .

[76]  T. Bollerslev,et al.  A Reduced Form Framework for Modeling Volatility of Speculative Prices Based on Realized Variation Measures , 2008 .

[77]  G. González-Rivera,et al.  Smooth-Transition GARCH Models , 1998 .

[78]  Timo Teräsvirta,et al.  Testing the constancy of regression parameters against continuous structural change , 1994 .

[79]  P. Hansen,et al.  A Forecast Comparison of Volatility Models: Does Anything Beat a Garch(1,1)? , 2004 .

[80]  Michael McAleer,et al.  ASYMPTOTIC THEORY FOR A VECTOR ARMA-GARCH MODEL , 2003, Econometric Theory.

[81]  R. Engle Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation , 1982 .

[82]  Stephen L Taylor,et al.  Modelling Financial Time Series , 1987 .

[83]  Blake LeBaron,et al.  Stochastic Volatility as a Simple Generator of Financial Power-Laws and Long Memory , 2001 .

[84]  F. Longin,et al.  The Threshold Effect in Expected Volatility: A Model Based on Asymmetric Information , 1997 .

[85]  Lan Zhang,et al.  A Tale of Two Time Scales , 2003 .

[86]  T. Bollerslev,et al.  Generalized autoregressive conditional heteroskedasticity , 1986 .

[87]  Wai Keung Li,et al.  On a Double-Threshold Autoregressive Heteroscedastic Time Series Model , 1996 .

[88]  C. Granger,et al.  The Source of Long Memory in Financial Market Volatility , 2007 .

[89]  G. E. Hagerud A new non-linear GARCH model , 1997 .

[90]  T. Bollerslev,et al.  ANSWERING THE SKEPTICS: YES, STANDARD VOLATILITY MODELS DO PROVIDE ACCURATE FORECASTS* , 1998 .

[91]  L. Glosten,et al.  On the Relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks , 1993 .

[92]  Jeremy H. Large,et al.  Moving Average-Based Estimators of Integrated Variance , 2008 .

[93]  M. McAleer,et al.  Multivariate Stochastic Volatility: A Review , 2006 .