Pseudocayratia, a new genus of Vitaceae from China and Japan with two new species and three new combinations
暂无分享,去创建一个
J. Wen | Zhiduan Chen | T. Hsu | I. Chen | Sadaf Habib | John K. Boggan | H. Okada | Limin Lu | V. Dang
[1] J. Wen,et al. A new phylogenetic tribal classification of the grape family (Vitaceae) , 2018 .
[2] Zhaoqing Chu,et al. Genome size variation and evolution in the grape family Vitaceae , 2018 .
[3] S. Mathews,et al. Optimal data partitioning, multispecies coalescent and Bayesian concordance analyses resolve early divergences of the grape family (Vitaceae) , 2018, Cladistics : the international journal of the Willi Hennig Society.
[4] Rebecca B. Dikow,et al. Developing integrative systematics in the informatics and genomic era, and calling for a global Biodiversity Cyberbank , 2017 .
[5] J. Wen,et al. Inflorescence morphology and development in the basal rosid lineage Vitales , 2017 .
[6] J. Wen,et al. Robust Phylogeny of Tetrastigma (Vitaceae) Based on Ten Plastid DNA Regions: Implications for Infrageneric Classification and Seed Character Evolution , 2017, Front. Plant Sci..
[7] J. Wen,et al. Cayratia cheniana (Vitaceae): An Endangered New Species Endemic to the Limestone Mountains of Ninh Thuan Province, Vietnam , 2016, Systematic Botany.
[8] V. Funk,et al. Collections‐based systematics: Opportunities and outlook for 2050 , 2015 .
[9] J. Wen,et al. Using nuclear gene data for plant phylogenetics: Progress and prospects II. Next‐gen approaches , 2015 .
[10] H. Tsukaya,et al. Lineage diversification and hybridization in the Cayratia japonica-Cayratia tenuifolia species complex. , 2014, Molecular phylogenetics and evolution.
[11] Wei Wang,et al. Phylogeny of the non-monophyletic Cayratia Juss. (Vitaceae) and implications for character evolution and biogeography. , 2013, Molecular phylogenetics and evolution.
[12] Ramón Doallo,et al. CircadiOmics: integrating circadian genomics, transcriptomics, proteomics and metabolomics , 2012, Nature Methods.
[13] Maxim Teslenko,et al. MrBayes 3.2: Efficient Bayesian Phylogenetic Inference and Model Choice Across a Large Model Space , 2012, Systematic biology.
[14] J. Wen,et al. The first phylogenetic analysis of Tetrastigma (Miq.) Planch., the host of Rafflesiaceae , 2011 .
[15] I. Chen,et al. Seed Morphology of Vitaceae , 2011, International Journal of Plant Sciences.
[16] Mark A. Miller,et al. Creating the CIPRES Science Gateway for inference of large phylogenetic trees , 2010, 2010 Gateway Computing Environments Workshop (GCE).
[17] T. Makino. Observations on the Flora of Japan.... , 2009 .
[18] Alexandros Stamatakis,et al. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models , 2006, Bioinform..
[19] Vitaceae , 1995, Plants of the Rio Grande Delta.
[20] E. H. Walker. Flora of Okinawa and the southern Ryukyu Islands , 1976 .
[21] J. Wen,et al. Spatial and temporal diversification of Tetrastigma ( Vitaceae ) , 2011 .
[22] I. Chen. History of Vitaceae inferred from morphology-based phylogeny and the fossil record of seeds , 2009 .
[23] J. Wen. Vitaceae: Vitaceae Juss., Gen. Pl.: 267 (1789), nom. cons. , 2007 .
[24] F. G. Meyer,et al. Flora of Japan , 1965 .
[25] A. Rehder. Notes on the Ligneous Plants Described By Leveille from Eastern Asia , 1929, Journal of the Arnold Arboretum..
[26] F. Gagnepain. Un genre meconnu: classification des Cissus et Cayratia , 1901 .