Manipulating intermolecular interactions for ultralong organic phosphorescence

[1]  Qianqian Li,et al.  Molecular Uniting Set Identified Characteristic ( MUSIC ) of Organic Optoelectronic Materials , 2022, Chinese Journal of Chemistry.

[2]  Wei Huang,et al.  Single-component color-tunable circularly polarized organic afterglow through chiral clusterization , 2022, Nature communications.

[3]  Dongpeng Yan,et al.  Light/force-sensitive 0D lead-free perovskites: from highly efficient blue afterglow to white phosphorescence with near-unity quantum efficiency. , 2022, Angewandte Chemie.

[4]  Wei Huang,et al.  Highly Efficient Blue Phosphorescence from Pillar‐Layer MOFs by Ligand Functionalization , 2021, Advanced materials.

[5]  Kanyi Pu,et al.  Molecular Probes for Autofluorescence-Free Optical Imaging. , 2021, Chemical reviews.

[6]  Wei Huang,et al.  Confining isolated chromophores for highly efficient blue phosphorescence , 2021, Nature Materials.

[7]  H. Miao,et al.  Organic Guest-Host System Produces Room-Temperature Phosphorescence at Part-Per-Billion Level. , 2021, Angewandte Chemie.

[8]  Dongpeng Yan,et al.  Boosting Wide‐Range Tunable Long‐Afterglow in 1D Metal–Organic Halide Micro/Nanocrystals for Space/Time‐Resolved Information Photonics , 2021, Advanced materials.

[9]  Dongpeng Yan,et al.  Wide range zero-thermal-quenching ultralong phosphorescence from zero-dimensional metal halide hybrids , 2020, Nature Communications.

[10]  Yafei Wang,et al.  Molecular Engineering via Controlling Structural Deformation for Highly Efficient Ultralong Organic Phosphorescence. , 2020, Angewandte Chemie.

[11]  Bumjoon J. Kim,et al.  Metal halide regulated photophysical turning of zero-dimensional organic metal halide hybrids: from efficient phosphorescence to ultralong afterglow. , 2020, Angewandte Chemie.

[12]  B. Tang,et al.  Room-temperature phosphorescence from organic aggregates , 2020, Nature Reviews Materials.

[13]  Wen‐Wen Xu,et al.  A Synergistic Enhancement Strategy for Realizing Ultralong and Efficient Room-Temperature Phosphorescence. , 2020, Angewandte Chemie.

[14]  F. Gu,et al.  Boosting Quantum Efficiency of Ultralong Organic Phosphorescence up to 52% via Intramolecular Halogen Bonding. , 2020, Angewandte Chemie.

[15]  F. Würthner,et al.  Persistent Room Temperature Phosphorescence from Triarylboranes: A Combined Experimental and Theoretical Study , 2020, Angewandte Chemie.

[16]  Wei Huang,et al.  Color-tunable ultralong organic phosphorescence materials for visual UV-light detection , 2020, Science China Chemistry.

[17]  Zhen Li,et al.  Molecular Packing: Another Key Point for the Performance of Organic and Polymeric Optoelectronic Materials. , 2020, Accounts of chemical research.

[18]  Xinliang Feng,et al.  Aromatic Phosphonates: A Novel Group of Emitters Showing Blue Ultralong Room Temperature Phosphorescence , 2020, Advanced materials.

[19]  Hongwei Wu,et al.  Color-tunable ultralong organic room temperature phosphorescence from a multicomponent copolymer , 2020, Nature Communications.

[20]  K. Y. Zhang,et al.  Thermally activated triplet exciton release for highly efficient tri-mode organic afterglow , 2020, Nature Communications.

[21]  Yue-e Huang,et al.  Ligand Control of Room-Temperature Phosphorescence Violating Kasha’s Rule in Hybrid Organic–Inorganic Metal Halides , 2020 .

[22]  Zhuguo Li 9,9-Dimethylxanthene Derivatives: New RTP Family Member and the Adjustable Performance through Substituent Effect. , 2020, Angewandte Chemie.

[23]  Christopher C. S. Chan,et al.  Two Are Better Than One: A Design Principle for Ultralong‐Persistent Luminescence of Pure Organics , 2019, Advanced materials.

[24]  Ian D. Williams,et al.  New Wine in Old Bottle: Prolonging Room-Temperature Phosphorescence of Crown Ethers by Supramolecular Interactions. , 2020, Angewandte Chemie.

[25]  Yanli Zhao,et al.  Amorphous ionic polymers with color-tunable ultralong organic phosphorescence. , 2019, Angewandte Chemie.

[26]  Qiang Zhao,et al.  Controlling Organic Room Temperature Phosphorescence through External Heavy‐Atom Effect for White Light Emission and Luminescence Printing , 2019, Advanced Optical Materials.

[27]  Wei Huang,et al.  Manipulating Ultralong Organic Phosphorescence of Small Molecular Crystals. , 2019, Chemistry.

[28]  Zhen Li,et al.  Ultralong UV/mechano-excited room temperature phosphorescence from purely organic cluster excitons , 2019, Nature Communications.

[29]  Huanli Dong,et al.  Crystal Engineering of Organic Optoelectronic Materials , 2019, Chem.

[30]  L. Meng,et al.  Synergistic Intra- and Intermolecular Noncovalent Interactions for Ultralong Organic Phosphorescence. , 2019, Small.

[31]  Dongpeng Yan,et al.  Simultaneous Long-Persistent Blue Luminescence and High Quantum Yield within 2D Organic-Metal Halide Perovskite Micro/Nanosheets. , 2019, Angewandte Chemie.

[32]  Xudong Cao,et al.  Enabling long-lived organic room temperature phosphorescence in polymers by subunit interlocking , 2019, Nature Communications.

[33]  C. Dong,et al.  Strategy for Activating Room-Temperature Phosphorescence of Carbon Dots in Aqueous Environments , 2019, Chemistry of Materials.

[34]  Kanyi Pu,et al.  An Organic Afterglow Protheranostic Nanoassembly , 2019, Advanced materials.

[35]  F. Huo,et al.  Colour-tunable ultra-long organic phosphorescence of a single-component molecular crystal , 2019, Nature Photonics.

[36]  Z. Su,et al.  Utilizing d-pπ Bonds for Ultralong Organic Phosphorescence. , 2019, Angewandte Chemie.

[37]  B. Tang,et al.  Boosting the efficiency of organic persistent room-temperature phosphorescence by intramolecular triplet-triplet energy transfer , 2019, Nature Communications.

[38]  H. Tian,et al.  Assembling-Induced Emission: An Efficient Approach for Amorphous Metal-Free Organic Emitting Materials with Room-Temperature Phosphorescence. , 2019, Accounts of chemical research.

[39]  Qi Wu,et al.  Prolonging Ultralong Organic Phosphorescence Lifetime to 2.5 s through Confining Rotation in Molecular Rotor , 2019, Advanced Optical Materials.

[40]  Wei Huang,et al.  Highly Efficient Ultralong Organic Phosphorescence through Intramolecular-Space Heavy-Atom Effect. , 2019, The journal of physical chemistry letters.

[41]  C. Adachi,et al.  Organic Long‐Persistent Luminescence from a Flexible and Transparent Doped Polymer , 2018, Advanced materials.

[42]  Qi Wu,et al.  Reversible Ultralong Organic Phosphorescence for Visual and Selective Chloroform Detection. , 2018, ACS applied materials & interfaces.

[43]  H. Tian,et al.  Amorphous Pure Organic Polymers for Heavy-Atom-Free Efficient Room-Temperature Phosphorescence Emission. , 2018, Angewandte Chemie.

[44]  Qi Wu,et al.  Simultaneously Enhancing Efficiency and Lifetime of Ultralong Organic Phosphorescence Materials by Molecular Self-Assembly. , 2018, Journal of the American Chemical Society.

[45]  Hongwei Hu,et al.  Efficient Room‐Temperature Phosphorescence from Organic–Inorganic Hybrid Perovskites by Molecular Engineering , 2018, Advanced materials.

[46]  J. Lam,et al.  A facile strategy for realizing room temperature phosphorescence and single molecule white light emission , 2018, Nature Communications.

[47]  Z. Shuai,et al.  Dynamic Ultralong Organic Phosphorescence by Photoactivation. , 2018, Angewandte Chemie.

[48]  Yuhui Wang,et al.  Conversion of Carbon Dots from Fluorescence to Ultralong Room‐Temperature Phosphorescence by Heating for Security Applications , 2018, Advanced materials.

[49]  Xin Chen,et al.  Transient and Persistent Room-Temperature Mechanoluminescence from a White-Light-Emitting AIEgen with Tricolor Emission Switching Triggered by Light. , 2018, Angewandte Chemie.

[50]  Yuhui Wang,et al.  Facile, Quick, and Gram-Scale Synthesis of Ultralong-Lifetime Room-Temperature-Phosphorescent Carbon Dots by Microwave Irradiation. , 2018, Angewandte Chemie.

[51]  Yanli Zhao,et al.  Ultralong room temperature phosphorescence from amorphous organic materials toward confidential information encryption and decryption , 2018, Science Advances.

[52]  Qi Wu,et al.  Hydrogen-Bonded Organic Aromatic Frameworks for Ultralong Phosphorescence by Intralayer π-π Interactions. , 2018, Angewandte Chemie.

[53]  M. Sugimoto,et al.  Ultralong Room‐Temperature Phosphorescence from Amorphous Polymer Poly(Styrene Sulfonic Acid) in Air in the Dry Solid State , 2018 .

[54]  Bin Wang,et al.  The influence of the molecular packing on the room temperature phosphorescence of purely organic luminogens , 2018, Nature Communications.

[55]  Bai Yang,et al.  Design of Metal-Free Polymer Carbon Dots: A New Class of Room-Temperature Phosphorescent Materials. , 2018, Angewandte Chemie.

[56]  Mingyang Yang,et al.  Induction of long-lived room temperature phosphorescence of carbon dots by water in hydrogen-bonded matrices , 2018, Nature Communications.

[57]  Qiang Zhao,et al.  Long-Lived Emissive Probes for Time-Resolved Photoluminescence Bioimaging and Biosensing. , 2018, Chemical reviews.

[58]  Qi Wu,et al.  Enhancing Ultralong Organic Phosphorescence by Effective π‐Type Halogen Bonding , 2018 .

[59]  Qi Wu,et al.  Ultralong Phosphorescence from Organic Ionic Crystals under Ambient Conditions. , 2018, Angewandte Chemie.

[60]  Jesse V Jokerst,et al.  Molecular afterglow imaging with bright, biodegradable polymer nanoparticles , 2017, Nature Biotechnology.

[61]  Bin Liu,et al.  Organic Nanocrystals with Bright Red Persistent Room-Temperature Phosphorescence for Biological Applications. , 2017, Angewandte Chemie.

[62]  S. Hirata Recent Advances in Materials with Room‐Temperature Phosphorescence: Photophysics for Triplet Exciton Stabilization , 2017 .

[63]  Zhen Li,et al.  How the Molecular Packing Affects the Room Temperature Phosphorescence in Pure Organic Compounds: Ingenious Molecular Design, Detailed Crystal Analysis, and Rational Theoretical Calculations , 2017, Advanced materials.

[64]  C. Botta,et al.  H-Aggregates Granting Crystallization-Induced Emissive Behavior and Ultralong Phosphorescence from a Pure Organic Molecule. , 2017, The journal of physical chemistry letters.

[65]  T. Fukushima,et al.  Unveiling a New Aspect of Simple Arylboronic Esters: Long-Lived Room-Temperature Phosphorescence from Heavy-Atom-Free Molecules. , 2017, Journal of the American Chemical Society.

[66]  Yuanping Yi,et al.  Induction of Strong Long-Lived Room-Temperature Phosphorescence of N-Phenyl-2-naphthylamine Molecules by Confinement in a Crystalline Dibromobiphenyl Matrix. , 2016, Angewandte Chemie.

[67]  Wei Huang,et al.  Excited State Modulation for Organic Afterglow: Materials and Applications , 2016, Advanced materials.

[68]  B. Tang,et al.  Rational Molecular Design for Achieving Persistent and Efficient Pure Organic Room-Temperature Phosphorescence , 2016 .

[69]  Dongpeng Yan,et al.  Strongly Enhanced Long‐Lived Persistent Room Temperature Phosphorescence Based on the Formation of Metal–Organic Hybrids , 2016 .

[70]  Yuan-chun Wu,et al.  Intermolecular Electronic Coupling of Organic Units for Efficient Persistent Room‐Temperature Phosphorescence , 2016, Angewandte Chemie.

[71]  C. Adachi,et al.  Afterglow Organic Light‐Emitting Diode , 2016, Advanced materials.

[72]  B. Tang,et al.  Achieving Persistent Room Temperature Phosphorescence and Remarkable Mechanochromism from Pure Organic Luminogens , 2015, Advanced materials.

[73]  Wei Huang,et al.  Stabilizing triplet excited states for ultralong organic phosphorescence. , 2015, Nature materials.

[74]  C. Adachi,et al.  Efficient Persistent Room Temperature Phosphorescence in Organic Amorphous Materials under Ambient Conditions , 2013 .

[75]  Kangwon Lee,et al.  Activating efficient phosphorescence from purely organic materials by crystal design. , 2011, Nature chemistry.

[76]  Fuyou Li,et al.  Phosphorescent chemosensors based on heavy-metal complexes. , 2010, Chemical Society reviews.

[77]  B. Tang,et al.  Crystallization-Induced Phosphorescence of Pure Organic Luminogens at Room Temperature , 2010 .

[78]  M. Dewhirst,et al.  A dual-emissive-materials design concept enables tumour hypoxia imaging. , 2009, Nature materials.

[79]  S. J. Payne,et al.  Multi-emissive difluoroboron dibenzoylmethane polylactide exhibiting intense fluorescence and oxygen-sensitive room-temperature phosphorescence. , 2007, Journal of the American Chemical Society.

[80]  Christopher A. Hunter,et al.  The nature of .pi.-.pi. interactions , 1990 .

[81]  Donald S. McClure,et al.  Triplet‐Singlet Transitions in Organic Molecules. Lifetime Measurements of the Triplet State , 1949 .