Almost Isometric Mesh Parameterization through Abstract Domains

In this paper, we propose a robust, automatic technique to build a global hi-quality parameterization of a two-manifold triangular mesh. An adaptively chosen 2D domain of the parameterization is built as part of the process. The produced parameterization exhibits very low isometric distortion, because it is globally optimized to preserve both areas and angles. The domain is a collection of equilateral triangular 2D regions enriched with explicit adjacency relationships (it is abstract in the sense that no 3D embedding is necessary). It is tailored to minimize isometric distortion, resulting in excellent parameterization qualities, even when meshes with complex shape and topology are mapped into domains composed of a small number of large continuous regions. Moreover, this domain is, in turn, remapped into a collection of 2D square regions, unlocking many advantages found in quad-based domains (e.g., ease of packing). The technique is tested on a variety of cases, including challenging ones, and compares very favorably with known approaches. An open-source implementation is made available.

[1]  Andrei Khodakovsky,et al.  Globally smooth parameterizations with low distortion , 2003, ACM Trans. Graph..

[2]  Pierre Alliez,et al.  Designing quadrangulations with discrete harmonic forms , 2006, SGP '06.

[3]  Reinhard Klein,et al.  An Adaptable Surface Parameterization Method , 2003, IMR.

[4]  Paolo Cignoni,et al.  MeshLab: an Open-Source 3D Mesh Processing System , 2008, ERCIM News.

[5]  Allen R. Tannenbaum,et al.  Texture Mapping via Optimal Mass Transport , 2010, IEEE Transactions on Visualization and Computer Graphics.

[6]  Konrad Polthier,et al.  QuadCover ‐ Surface Parameterization using Branched Coverings , 2007, Comput. Graph. Forum.

[7]  Herbert Edelsbrunner,et al.  Topology preserving edge contraction , 1998 .

[8]  Steven J. Gortler,et al.  Geometry images , 2002, SIGGRAPH.

[9]  Feng Luo,et al.  Variational principles for discrete surfaces , 2008 .

[10]  Peter Liepa,et al.  Filling Holes in Meshes , 2003, Symposium on Geometry Processing.

[11]  Shi-Min Hu,et al.  Principal curvatures from the integral invariant viewpoint , 2007, Comput. Aided Geom. Des..

[12]  Kai Hormann,et al.  Surface Parameterization: a Tutorial and Survey , 2005, Advances in Multiresolution for Geometric Modelling.

[13]  Xianfeng Gu,et al.  Discrete Surface Ricci Flow , 2008, IEEE Transactions on Visualization and Computer Graphics.

[14]  Peter Schröder,et al.  Conformal equivalence of triangle meshes , 2008, ACM Trans. Graph..

[15]  Ligang Liu,et al.  A Local/Global Approach to Mesh Parameterization , 2008, Comput. Graph. Forum.

[16]  Craig Gotsman,et al.  Conformal Flattening by Curvature Prescription and Metric Scaling , 2008, Comput. Graph. Forum.

[17]  Alla Sheffer,et al.  Fundamentals of spherical parameterization for 3D meshes , 2003, ACM Trans. Graph..

[18]  Keenan Crane,et al.  Rectangular multi-chart geometry images , 2006, SGP '06.

[19]  Craig Gotsman,et al.  Explicit Surface Remeshing , 2003, Symposium on Geometry Processing.

[20]  David P. Dobkin,et al.  MAPS: multiresolution adaptive parameterization of surfaces , 1998, SIGGRAPH.

[21]  Pierre Alliez,et al.  Spectral Conformal Parameterization , 2008, Comput. Graph. Forum.

[22]  Hugues Hoppe,et al.  Spherical parametrization and remeshing , 2003, ACM Trans. Graph..

[23]  Pierre Alliez,et al.  Isotropic Remeshing of Surfaces: A Local Parameterization Approach , 2003, IMR.

[24]  Paolo Cignoni,et al.  PolyCube-Maps , 2004, SIGGRAPH 2004.

[25]  Valerio Pascucci,et al.  Spectral surface quadrangulation , 2006, SIGGRAPH '06.

[26]  Hans-Peter Seidel,et al.  Linear angle based parameterization , 2007, Symposium on Geometry Processing.

[27]  Neil A. Dodgson,et al.  Advances in Multiresolution for Geometric Modelling , 2005 .

[28]  Peter Schröder,et al.  Discrete conformal mappings via circle patterns , 2005, TOGS.

[29]  Shi-Min Hu,et al.  Optimal Surface Parameterization Using Inverse Curvature Map , 2008, IEEE Transactions on Visualization and Computer Graphics.

[30]  Tony DeRose,et al.  Mesh optimization , 1993, SIGGRAPH.

[31]  Peter Schröder,et al.  Consistent mesh parameterizations , 2001, SIGGRAPH.

[32]  Konstantin Mischaikow,et al.  Feature-based surface parameterization and texture mapping , 2005, TOGS.

[33]  Alla Sheffer,et al.  Cross-parameterization and compatible remeshing of 3D models , 2004, ACM Trans. Graph..

[34]  K. Hormann,et al.  MIPS: An Efficient Global Parametrization Method , 2000 .

[35]  Zoë J. Wood,et al.  Topological Noise Removal , 2001, Graphics Interface.

[36]  Hugues Hoppe,et al.  Inter-surface mapping , 2004, ACM Trans. Graph..

[37]  Pedro V. Sander,et al.  Texture mapping progressive meshes , 2001, SIGGRAPH.

[38]  Bruno Lévy,et al.  Least squares conformal maps for automatic texture atlas generation , 2002, ACM Trans. Graph..