Verification of the diffusive shock acceleration in Mrk 501

The present work considers a plane shock front propagating along a cylindrical jet. Electrons experience the diffusive shock acceleration around the shock front, and subsequently drift away into the downstream flow in which they emit most of their energy. Assuming a proper boundary condition at the interface between the shock zone and the downstream zone, we solve the transport equation for the electrons in the downstream flow zone, where the combined effects of escape, synchrotron and IC cooling in the Thomson regime are taken into account. Using the electron spectrum obtained in this manner we calculate the multi-wavelength spectral energy distribution of Mrk 501 in the synchrotron self-Compton scenario. We check numerically if the Klein-Nishina cross-section could be approximated to the Thomsom regime. We consider whether the model results yield physically reasonable parameters, and further discuss some of implications of the model results. It suggests that the process of diffusive shock acceleration operates in the outflow of Mrk 501.

[1]  T. Lewis,et al.  A Steady-state Spectral Model for Electron Acceleration and Cooling in Blazar Jets: Application to 3C 279 , 2017, 1710.01334.

[2]  M. Baring,et al.  Probing acceleration and turbulence at relativistic shocks in blazar jets , 2016, 1609.03899.

[3]  Tucson,et al.  Multiband variability studies and novel broadband SED modeling of Mrk 501 in 2009 , 2016, 1612.09472.

[4]  L. Zhang,et al.  DISCERNING THE GAMMA-RAY-EMITTING REGION IN THE FLAT SPECTRUM RADIO QUASARS , 2016, 1612.02394.

[5]  C. Dermer,et al.  ELECTRON ACCELERATION IN PULSAR-WIND TERMINATION SHOCKS: AN APPLICATION TO THE CRAB NEBULA GAMMA-RAY FLARES , 2016, 1610.04569.

[6]  A. Falcone,et al.  Very high energy outburst of Markarian 501 in May 2009 , 2016, 1608.01569.

[7]  L. Sironi,et al.  Relativistic Shocks: Particle Acceleration and Magnetization , 2015, 1506.02034.

[8]  K. Toma,et al.  Synchrotron self-Compton emission by relativistic electrons under stochastic acceleration: application to Mrk 421 and Mrk 501 , 2015, 1502.03261.

[9]  P. R. Vishwanath,et al.  MULTI-FREQUENCY, MULTI-EPOCH STUDY OF Mrk 501: HINTS FOR A TWO-COMPONENT NATURE OF THE EMISSION , 2014, 1503.02706.

[10]  C. Dermer The blazar paradigm and its discontents , 2014, 1408.6453.

[11]  Y. G. Zheng,et al.  X-ray and γ-ray variability of Mrk 421 , 2014, 1608.00289.

[12]  Li Zhang,et al.  Differences between electron energy distributions in both steady and flare states of Mrk 501 , 2014 .

[13]  Peter A. Becker,et al.  FOURIER ANALYSIS OF BLAZAR VARIABILITY , 2014, 1406.2333.

[14]  L. Chen CURVATURE OF THE SPECTRAL ENERGY DISTRIBUTIONS OF BLAZARS , 2014, 1405.1140.

[15]  B. Lott,et al.  EQUIPARTITION GAMMA-RAY BLAZARS AND THE LOCATION OF THE GAMMA-RAY EMISSION SITE IN 3C 279 , 2013, 1304.6680.

[16]  Nasa The Structure and Emission Model of the Relativistic Jet in the Quasar 3C 279 Inferred From Radio To High-Energy Gamma-Ray Observations in 2008-2010 , 2013 .

[17]  T. Kang,et al.  EVIDENCE FOR SECONDARY EMISSION AS THE ORIGIN OF HARD SPECTRA IN TeV BLAZARS , 2013, 1609.09148.

[18]  Q. Yuan,et al.  EMITTING ELECTRONS SPECTRA AND ACCELERATION PROCESSES IN THE JET OF Mrk 421: FROM THE LOW STATE TO THE GIANT FLARE STATE , 2013, 1301.6476.

[19]  W. P. Chen,et al.  THE STRUCTURE AND EMISSION MODEL OF THE RELATIVISTIC JET IN THE QUASAR 3C 279 INFERRED FROM RADIO TO HIGH-ENERGY γ-RAY OBSERVATIONS IN 2008–2010 , 2012, 1206.0745.

[20]  S. Ansoldi,et al.  EMITTING ELECTRONS AND SOURCE ACTIVITY IN MARKARIAN 501 , 2012, 1205.5237.

[21]  Andrew Taylor,et al.  Very hard gamma-ray emission from a flare of Mrk 501 , 2012 .

[22]  G. Cotter,et al.  Synchrotron and inverse-Compton emission from blazar jets I: a uniform conical jet model. , 2012, 1203.3881.

[23]  M. Baring,et al.  DIFFUSIVE ACCELERATION OF PARTICLES AT OBLIQUE, RELATIVISTIC, MAGNETOHYDRODYNAMIC SHOCKS , 2011, 1110.5968.

[24]  F. Aharonian,et al.  “LEADING BLOB” MODEL IN A STOCHASTIC ACCELERATION SCENARIO: THE CASE OF THE 2009 FLARE OF Mkn 501 , 2011, 1108.4568.

[25]  A. Bell,et al.  Cosmic ray acceleration at oblique shocks , 2011, 1108.0582.

[26]  Roma,et al.  STOCHASTIC ACCELERATION AND THE EVOLUTION OF SPECTRAL DISTRIBUTIONS IN SYNCHRO-SELF-COMPTON SOURCES: A SELF-CONSISTENT MODELING OF BLAZARS’ FLARES , 2011, 1107.1879.

[27]  L. A. Antonelli,et al.  Fermi-LAT Observations of Markarian 421: the Missing Piece of its Spectral Energy Distribution , 2011, 1106.1348.

[28]  L. Zhang,et al.  RAPID TeV FLARING IN MARKARIAN 501 , 2011, 1609.09108.

[29]  W. P. Chen,et al.  INSIGHTS INTO THE HIGH-ENERGY γ-RAY EMISSION OF MARKARIAN 501 FROM EXTENSIVE MULTIFREQUENCY OBSERVATIONS IN THE FERMI ERA , 2011 .

[30]  M. V. Fonseca,et al.  SPECTRAL ENERGY DISTRIBUTION OF MARKARIAN 501: QUIESCENT STATE VERSUS EXTREME OUTBURST , 2010, 1012.2200.

[31]  T. E. al.,et al.  Insights Into the High-Energy Gamma-ray Emission of Markarian 501 from Extensive Multifrequency Observations in the Fermi Era , 2010, 1011.5260.

[32]  F. Spanier,et al.  Modelling the variability of 1ES1218+30.4 , 2010, 1005.3747.

[33]  P. Blasi Shock acceleration of electrons in the presence of synchrotron losses – I. Test-particle theory , 2009, 0912.2053.

[34]  G. Ghisellini,et al.  TeV BL Lac objects at the dawn of the Fermi era , 2009, 0909.0651.

[35]  Landessternwarte,et al.  Multiwavelength observations of Mrk 501 in 2008 , 2009, 0907.1098.

[36]  Gino Tosti,et al.  SIMULTANEOUS OBSERVATIONS OF PKS 2155−304 WITH HESS, FERMI, RXTE, AND ATOM: SPECTRAL ENERGY DISTRIBUTIONS AND VARIABILITY IN A LOW STATE , 2009 .

[37]  M. Sikora,et al.  CONSTRAINING EMISSION MODELS OF LUMINOUS BLAZAR SOURCES , 2009, 0904.1414.

[38]  E. Nakar,et al.  KLEIN–NISHINA EFFECTS ON OPTICALLY THIN SYNCHROTRON AND SYNCHROTRON SELF-COMPTON SPECTRUM , 2009, 0903.2557.

[39]  M. Perri,et al.  Swift observations of the very intense flaring activity of Mrk 421 during 2006. I. Phenomenological picture of electron acceleration and predictions for MeV/GeV emission , 2009, 0901.4124.

[40]  I. Torino,et al.  TeV variability in blazars: how fast can it be? , 2008, 0810.5555.

[41]  F. Aharonian,et al.  Diffusive shock acceleration in radiation-dominated environments , 2008, 0803.1138.

[42]  P. Edwards,et al.  SIGNIFICANT LIMB-BRIGHTENING IN THE INNER PARSEC OF MARKARIAN 501 , 2008, 0812.3164.

[43]  Stsci,et al.  The jet of Markarian 501 from millions of Schwarzschild radii down to a few hundreds , 2008, 0807.1786.

[44]  C. Dermer,et al.  Synchrotron Self-Compton Analysis of TeV X-Ray-Selected BL Lacertae Objects , 2008, 0802.1529.

[45]  G. Ghisellini,et al.  The power of blazar jets , 2007, 0711.4112.

[46]  F. Aharonian,et al.  Analytical solutions for energy spectra of electrons accelerated by nonrelativistic shock-waves in shell type supernova remnants , 2007 .

[47]  Miguel Ángel Martínez,et al.  Variable Very High Energy γ-Ray Emission from Markarian 501 , 2007, astro-ph/0702008.

[48]  M. Baring,et al.  Electrostatic Potentials in Supernova Remnant Shocks , 2006, astro-ph/0609407.

[49]  G. Ghisellini,et al.  Stochastic particle acceleration and synchrotron self-Compton radiation in TeV blazars. , 2006, astro-ph/0603362.

[50]  Roma,et al.  Log-parabolic spectra and particle acceleration in blazars. III. SSC emission in the TeV band from Mkn 501 , 2005, astro-ph/0511673.

[51]  Felix A. Aharonian,et al.  Klein-Nishina effects in the spectra of non-thermal sources immersed in external radiation fields , 2005, astro-ph/0504388.

[52]  E. Waxman,et al.  Energy spectrum of particles accelerated in relativistic collisionless shocks. , 2004, Physical review letters.

[53]  Glen P. Double,et al.  Diffusive shock acceleration in unmodified relativistic, oblique shocks , 2004, astro-ph/0408527.

[54]  P. Giommi,et al.  Log-parabolic spectra and particle acceleration in the BL Lac object Mkn 421: Spectral analysis of the complete BeppoSAX wide band X-ray data set , 2003, astro-ph/0312260.

[55]  P. Edwards,et al.  Parsec-Scale Properties of Markarian 501 , 2003, astro-ph/0309285.

[56]  R. Clay,et al.  Ultra High Energy Cosmic Rays , 2003, Publications of the Astronomical Society of Australia.

[57]  P. Edwards,et al.  The Subluminal Parsec-Scale Jet of Markarian 501 , 2002, astro-ph/0210482.

[58]  M. Kino,et al.  Energetics of TeV Blazars and Physical Constraints on Their Emission Regions , 2001, astro-ph/0107436.

[59]  John G. Kirk,et al.  Particle acceleration by ultrarelativistic shocks: theory and simulations , 2001, astro-ph/0107530.

[60]  C. Dermer,et al.  An Evolutionary Scenario for Blazar Unification , 2001, astro-ph/0106395.

[61]  E. Palazzi,et al.  Theoretical Implications from the Spectral Evolution of Markarian 501 Observed with BeppoSAX , 2001 .

[62]  P. Giommi,et al.  Extreme synchrotron BL Lac objects , 2001, astro-ph/0103343.

[63]  H. Sol,et al.  The multifrequency emission of Mrk 501 From radio to TeV gamma-rays , 2001 .

[64]  Y. A. Gallant,et al.  Particle Acceleration at Ultrarelativistic Shocks: An Eigenfunction Method , 2000, astro-ph/0005222.

[65]  Haiyang Li,et al.  Electron Acceleration and Time Variability of High-Energy Emission from Blazars , 2000, astro-ph/0002137.

[66]  J. Quinn,et al.  A study of high energy emission from the TeV blazar Mrk 501 during multiwavelength observations in 1996 , 2000 .

[67]  W. Bednarek,et al.  The physical parameters of Markarian 501 during flaring activity , 1999, astro-ph/9902050.

[68]  T. Takahashi,et al.  High-Energy Emission from the TeV Blazar Markarian 501 during Multiwavelength Observations in 1996 , 1998, astro-ph/9811014.

[69]  Marco Chiaberge,et al.  Rapid variability in the synchrotron self Compton model for blazars , 1998, astro-ph/9810263.

[70]  R. Maartens,et al.  Relaxational effects in radiating stellar collapse , 1998, gr-qc/9810001.

[71]  Alessandro Bressan,et al.  Modeling the Effects of Dust on Galactic Spectral Energy Distributions from the Ultraviolet to the Millimeter Band , 1998 .

[72]  Milano,et al.  Constraints on the Physical Parameters of TeV Blazars , 1998, astro-ph/9809051.

[73]  C. Urry,et al.  Multiwavelength properties of blazars , 1997, astro-ph/9702176.

[74]  S. Inoue,et al.  Electron Acceleration and Gamma-Ray Emission from Blazars , 1996 .

[75]  P. Padovani,et al.  UNIFIED SCHEMES FOR RADIO-LOUD ACTIVE GALACTIC NUCLEI , 1995, astro-ph/9506063.

[76]  Martin J. Rees,et al.  Comptonization of Diffuse Ambient Radiation by a Relativistic Jet: The Source of Gamma Rays from Blazars? , 1994 .

[77]  Charles D. Dermer,et al.  Model for the high-energy emission from blazars , 1993 .

[78]  M. Begelman,et al.  Plasma astrophysics. , 1993, Science.

[79]  G. Ghisellini,et al.  A jet model for the gamma-ray emitting blazar 3C 279 , 1992 .

[80]  L. Ball,et al.  Diffusive acceleration of electrons in SN 1987A , 1992 .

[81]  S. Reynolds,et al.  First-order Fermi particle acceleration by relativistic shocks , 1990 .

[82]  A. Heavens,et al.  Particle acceleration at oblique shock fronts , 1989 .

[83]  Frank C. Jones,et al.  The plasma physics of shock acceleration , 1989 .

[84]  Roger D. Blandford,et al.  Particle acceleration at astrophysical shocks: A theory of cosmic ray origin , 1987 .

[85]  J. Jokipii Rate of energy gain and maximum energy in diffusive shock acceleration , 1987 .

[86]  Reuven Ramaty,et al.  Shock acceleration of electrons and ions in solar flares , 1985 .

[87]  L. Drury An introduction to the theory of diffusive shock acceleration of energetic particles in tenuous plasmas , 1983 .

[88]  J. Jokipii Particle drift, diffusion, and acceleration at shocks , 1982 .

[89]  A. Bell The acceleration of cosmic rays in shock fronts – I , 1978 .

[90]  Jeremiah P. Ostriker,et al.  Particle Acceleration by Astrophysical Shocks , 1978 .

[91]  N. A. Krall,et al.  Principles of Plasma Physics , 1973 .