A Kapitza–Dirac–Talbot–Lau interferometer for highly polarizable molecules

[1]  H. Smith,et al.  Bose–Einstein Condensation in Dilute Gases: Fermions , 2008 .

[2]  N. Doltsinis,et al.  Thermal and electrical properties of porphyrin derivatives and their relevance for molecule interferometry. , 2007, The Journal of chemical physics.

[3]  M. Arndt,et al.  UV-VIS absorption spectroscopy of large molecules for applications in matter wave interferometry , 2007 .

[4]  A. Cronin,et al.  Electron interferometry with nanogratings , 2006, physics/0609063.

[5]  J. T. Mendonça,et al.  Quantum gravitational decoherence of matter waves , 2006, gr-qc/0603112.

[6]  A. Cronin,et al.  Electron diffraction from free-standing, metal-coated transmission gratings , 2005 .

[7]  J. Schmiedmayer,et al.  Matter-wave interferometry in a double well on an atom chip , 2005, quant-ph/0507047.

[8]  J. Sipe,et al.  Theory of decoherence in a matter wave Talbot-Lau interferometer (18 pages) , 2004, quant-ph/0407245.

[9]  A. Zeilinger,et al.  Decoherence of matter waves by thermal emission of radiation , 2004, Nature.

[10]  R. Alicki,et al.  Decoherence and the Appearance of a Classical World in Quantum Theory , 2004 .

[11]  R. Loidl,et al.  Violation of a Bell-like inequality in single-neutron interferometry , 2003, Nature.

[12]  A. Zeilinger,et al.  Concepts for near-field interferometers with large molecules , 2003 .

[13]  D. Sprinzak,et al.  An electronic Mach–Zehnder interferometer , 2003, Nature.

[14]  W. Zurek Decoherence, einselection, and the quantum origins of the classical , 2001, quant-ph/0105127.

[15]  A. Zeilinger,et al.  Matter-wave interferometer for large molecules. , 2002, Physical review letters.

[16]  P. Fouquet,et al.  The van der Waals potential between metastable atoms and solid surfaces: Novel diffraction experiments vs. theory , 2001, quant-ph/0112173.

[17]  C. Pethick,et al.  Bose–Einstein Condensation in Dilute Gases: Contents , 2008 .

[18]  A. Zeilinger,et al.  Diffraction of complex molecules by structures made of light. , 2001, Physical review letters.

[19]  H. Batelaan,et al.  Observation of the Kapitza–Dirac effect , 2001, Nature.

[20]  Naoto Tamai,et al.  Ultrafast Dynamics of Photochromic Systems. , 2000, Chemical reviews.

[21]  Anton Zeilinger,et al.  Wave–particle duality of C60 molecules , 1999, Nature.

[22]  A. Kumarakrishnan,et al.  Time-Domain de Broglie Wave Interferometry , 1997 .

[23]  Mark L. Schattenburg,et al.  Large‐area achromatic interferometric lithography for 100 nm period gratings and grids , 1996 .

[24]  Rubenstein,et al.  Optics and interferometry with Na2 molecules. , 1995, Physical review letters.

[25]  S. Ameerunisha,et al.  Characterization of simple photoresponsive systems and their applications to metal ion transport , 1995 .

[26]  J. Toennies,et al.  Nondestructive Mass Selection of Small van der Waals Clusters , 1994, Science.

[27]  N. Herron,et al.  Production of Perfluoroalkylated Nanospheres from Buckminsterfullerene , 1993, Science.

[28]  P. Meystre,et al.  Spontaneous emission in the near-resonant kapitza-dirac effect , 1992 .

[29]  Carnal,et al.  Young's double-slit experiment with atoms: A simple atom interferometer. , 1991, Physical review letters.

[30]  Keith,et al.  An interferometer for atoms. , 1991, Physical review letters.

[31]  Gould,et al.  Diffraction of atoms by light: The near-resonant Kapitza-Dirac effect. , 1986, Physical review letters.

[32]  H. Casimir,et al.  Influence of Retardation on the London–van der Waals Forces , 1946, Nature.