Photoelectrochemical deoxyribonucleic acid sensing on a nanostructured TiO2 electrode

A nanostructured TiO2 electrode chemisorbed with probe deoxyribonucleic acid (DNA) can photoelectrochemically detect a dye-labeled target DNA molecule. After the hybridization between the probe and target DNA molecules, light irradiation generates electrons in the dye molecules, and these electrons are injected into the TiO2 electrode. The resulting photocurrent can be measured and corresponds to the concentration of target DNA. This sensor can quantitatively detect target DNA at lower than nanomolar concentrations. In addition, by utilizing two different dyes, different DNA sequences can be detected on the TiO2 electrode.

[1]  H. Fink,et al.  Electrical conduction through DNA molecules , 1999, Nature.

[2]  Nam-Gyu Park,et al.  Estimation of the Charge-Collection Efficiency of Dye-Sensitized Nanocrystalline TiO2 Solar Cells* , 1999 .

[3]  M. Grätzel,et al.  A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films , 1991, Nature.

[4]  A. Dereux,et al.  Selective Surface Modification of SiO 2 -TiO 2 Supports with Phosphonic Acids , 2004 .

[5]  Adrian C. Fisher,et al.  Intensity Dependence of the Back Reaction and Transport of Electrons in Dye-Sensitized Nanocrystalline TiO2 Solar Cells , 2000 .

[6]  Tomoji Kawai,et al.  Self-assembled DNA networks and their electrical conductivity , 2000 .

[7]  Mohammad Khaja Nazeeruddin,et al.  Conversion of light to electricity by cis-X2bis(2,2'-bipyridyl-4,4'-dicarboxylate)ruthenium(II) charge-transfer sensitizers (X = Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline titanium dioxide electrodes , 1993 .

[8]  T. Kitamura,et al.  Influence of the electrolytes on electron transport in mesoporous TiO2-Electrolyte systems , 2002 .

[9]  S. P. Fodor,et al.  Light-generated oligonucleotide arrays for rapid DNA sequence analysis. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[10]  Masatsugu Shimomura,et al.  Anisotropic Electric Conductivity in an Aligned DNA Cast Film , 1998 .

[11]  Norbert F. Scherer,et al.  Charge Transfer Across the Nanocrystalline-DNA Interface: Probing DNA Recognition , 2004 .

[12]  S O Kelley,et al.  Electron transfer between bases in double helical DNA. , 1999, Science.

[13]  C. Dekker,et al.  Direct measurement of electrical transport through DNA molecules , 2000, Nature.

[14]  D. Klinov,et al.  Proximity-induced superconductivity in DNA. , 2001, Science.

[15]  C. Papadopoulos,et al.  Metallic conduction through engineered DNA: DNA nanoelectronic building blocks. , 2001, Physical review letters.

[16]  H. Kondo,et al.  DNA sensing on a DNA probe-modified electrode using ferrocenylnaphthalene diimide as the electrochemically active ligand. , 2000, Analytical chemistry.

[17]  S. Tosatti,et al.  Self-Assembled Monolayers of Dodecyl and Hydroxy-dodecyl Phosphates on Both Smooth and Rough Titanium and Titanium Oxide Surfaces , 2002 .

[18]  K. Hashimoto,et al.  Sequence-specific gene detection with a gold electrode modified with DNA probes and an electrochemically active dye. , 1994, Analytical chemistry.

[19]  D. D. Eley,et al.  Semiconductivity of organic substances. Part 9.—Nucleic acid in the dry state , 1962 .

[20]  Ronald W. Davis,et al.  Quantitative Monitoring of Gene Expression Patterns with a Complementary DNA Microarray , 1995, Science.

[21]  Valery Shklover,et al.  Nanocrystalline titanium oxide electrodes for photovoltaic applications , 2005 .

[22]  A Paul Alivisatos,et al.  Room-temperature single-nucleotide polymorphism and multiallele DNA detection using fluorescent nanocrystals and microarrays. , 2003, Analytical chemistry.