Applications and limitations of regulatory RNA elements in synthetic biology and biotechnology

Synthetic biology requires the design and implementation of novel enzymes, genetic circuits or even entire cells, which can be controlled by the user. RNA‐based regulatory elements have many important functional properties in this regard, such as their modular nature and their ability to respond to specific external stimuli. These properties have led to the widespread exploration of their use as gene regulation devices in synthetic biology. In this review, we focus on two major types of RNA elements: riboswitches and RNA thermometers (RNATs). We describe their general structure and function, before discussing their potential uses in synthetic biology (e.g. in the production of biofuels and biodegradable plastics). We also discuss their limitations, and novel strategies to implement RNA‐based regulatory devices in biotechnological applications. We close with a description of some common model organisms used in synthetic biology, with a focus on the current applications and limitations of RNA‐based regulation.

[1]  Lydia M Contreras,et al.  Synthetic Biology of Small RNAs and Riboswitches , 2018, Microbiology spectrum.

[2]  Sophia Hsin-Jung Li,et al.  Ralstonia eutropha H16 as a Platform for the Production of Biofuels, Biodegradable Plastics, and Fine Chemicals from Diverse Carbon Resources , 2016 .

[3]  Christophe Lasseur,et al.  MELiSSA: THE EUROPEAN PROJECT OF CLOSED LIFE SUPPORT SYSTEM , 2006 .

[4]  D. Meldrum,et al.  Application of synthetic biology in cyanobacteria and algae , 2012, Front. Microbio..

[5]  Mario Mörl,et al.  Synthetic Riboswitches: From Plug and Pray toward Plug and Play. , 2017, Biochemistry.

[6]  Harry L. T. Mobley,et al.  Pathogenic Escherichia coli , 2004, Nature Reviews Microbiology.

[7]  Christopher M Thomas,et al.  Mechanisms of, and Barriers to, Horizontal Gene Transfer between Bacteria , 2005, Nature Reviews Microbiology.

[8]  R. Nagar,et al.  Antioxidant phenolics and flavonoids in common Indian foods. , 1998, The Journal of the Association of Physicians of India.

[9]  C. Dann,et al.  Engineering of Bacillus subtilis Strains To Allow Rapid Characterization of Heterologous Diguanylate Cyclases and Phosphodiesterases , 2014, Applied and Environmental Microbiology.

[10]  Chae Hyun Lim,et al.  Synthetic RNA devices to expedite the evolution of metabolite-producing microbes , 2013, Nature Communications.

[11]  T. Clauss,et al.  Elucidation of roles for vitamin B12 in regulation of folate, ubiquinone, and methionine metabolism , 2017, Proceedings of the National Academy of Sciences.

[12]  R. Breaker,et al.  Riboswitches that sense S-adenosylhomocysteine and activate genes involved in coenzyme recycling. , 2008, Molecular cell.

[13]  S. Atsumi,et al.  Cyanobacterial biofuel production. , 2012, Journal of biotechnology.

[14]  J. Keasling,et al.  Metabolic engineering of Saccharomyces cerevisiae for production of fatty acid-derived biofuels and chemicals. , 2014, Metabolic engineering.

[15]  L. Gold,et al.  Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. , 1990, Science.

[16]  Ronald R. Breaker,et al.  Eukaryotic TPP riboswitch regulation of alternative splicing involving long-distance base pairing , 2013, Nucleic acids research.

[17]  S. Haas,et al.  Synthetic riboswitches for external regulation of genes transferred by replication-deficient and oncolytic adenoviruses , 2012, Nucleic acids research.

[18]  R. Batey,et al.  The structure of a tetrahydrofolate-sensing riboswitch reveals two ligand binding sites in a single aptamer. , 2011, Structure.

[19]  Li Zhou,et al.  Comprehensive characterization of a theophylline riboswitch reveals two pivotal features of Shine-Dalgarno influencing activated translation property , 2017, Applied Microbiology and Biotechnology.

[20]  R. Breaker,et al.  Metabolism of Free Guanidine in Bacteria Is Regulated by a Widespread Riboswitch Class. , 2017, Molecular cell.

[21]  Ali Nahvi,et al.  Genetic control by a metabolite binding mRNA. , 2002, Chemistry & biology.

[22]  Geun-Joong Kim,et al.  Over-expression of recombinant proteins with N-terminal His-tag via subcellular uneven distribution in Escherichia coli. , 2015, Acta biochimica et biophysica Sinica.

[23]  F. Narberhaus,et al.  Temperature-driven differential gene expression by RNA thermosensors. , 2014, Biochimica et biophysica acta.

[24]  Ivonne M C M Rietjens,et al.  Flavonoids and alkenylbenzenes: mechanisms of mutagenic action and carcinogenic risk. , 2005, Mutation research.

[25]  R. Batey,et al.  Cobalamin riboswitches exhibit a broad range of ability to discriminate between methylcobalamin and adenosylcobalamin , 2017, The Journal of Biological Chemistry.

[26]  R. Breaker,et al.  Bacterial riboswitches cooperatively bind Ni(2+) or Co(2+) ions and control expression of heavy metal transporters. , 2015, Molecular cell.

[27]  A. Zeng,et al.  Exploring lysine riboswitch for metabolic flux control and improvement of L-lysine synthesis in Corynebacterium glutamicum. , 2015, ACS synthetic biology.

[28]  U. Justesen,et al.  Determination of plant polyphenols in Danish foodstuffs by HPLC-UV and LC-MS detection. , 1997, Cancer letters.

[29]  Jay D. Keasling,et al.  Improving Microbial Biogasoline Production in Escherichia coli Using Tolerance Engineering , 2014, mBio.

[30]  A. Sinskey,et al.  Growth and polyhydroxybutyrate production by Ralstonia eutropha in emulsified plant oil medium , 2011, Applied Microbiology and Biotechnology.

[31]  Ronald R. Breaker,et al.  Thiamine derivatives bind messenger RNAs directly to regulate bacterial gene expression , 2002, Nature.

[32]  F. Werner A Nexus for Gene Expression—Molecular Mechanisms of Spt5 and NusG in the Three Domains of Life , 2012, Journal of molecular biology.

[33]  D. Nies,et al.  Microbial heavy-metal resistance , 1999, Applied Microbiology and Biotechnology.

[34]  R. Batey,et al.  Structure of the SAM-II riboswitch bound to S-adenosylmethionine , 2008, Nature Structural &Molecular Biology.

[35]  Marc Vogel,et al.  Tetracycline determines the conformation of its aptamer at physiological magnesium concentrations. , 2014, Biophysical journal.

[36]  R. Breaker,et al.  The Biology of Free Guanidine As Revealed by Riboswitches. , 2017, Biochemistry.

[37]  Guo-Qiang Chen,et al.  A microbial polyhydroxyalkanoates (PHA) based bio- and materials industry. , 2009, Chemical Society reviews.

[38]  A. Serganov,et al.  Structural basis for gene regulation by a thiamine pyrophosphate-sensing riboswitch , 2006, Nature.

[39]  H. Younesi,et al.  Biosorption equilibria of binary Cd(II) and Ni(II) systems onto Saccharomyces cerevisiae and Ralstonia eutropha cells: application of response surface methodology. , 2009, Journal of hazardous materials.

[40]  Carl W. Gunderson,et al.  Toxic protein expression in Escherichia coli using a rhamnose-based tightly regulated and tunable promoter system. , 2006, BioTechniques.

[41]  T. Kwaku Dayie,et al.  Multiple conformations of SAM-II riboswitch detected with SAXS and NMR spectroscopy , 2011, Nucleic acids research.

[42]  M. Gelfand,et al.  Comparative Genomics of the Vitamin B12 Metabolism and Regulation in Prokaryotes* , 2003, Journal of Biological Chemistry.

[43]  B. Kallipolitis,et al.  An unstructured 5′-coding region of the prfA mRNA is required for efficient translation , 2011, Nucleic acids research.

[44]  Andrea Haller,et al.  Conformational capture of the SAM-II riboswitch. , 2011, Nature chemical biology.

[45]  R. Breaker,et al.  Control of alternative RNA splicing and gene expression by eukaryotic riboswitches , 2007, Nature.

[46]  Jeffrey E. Barrick,et al.  Riboswitches Control Fundamental Biochemical Pathways in Bacillus subtilis and Other Bacteria , 2003, Cell.

[47]  R. Breaker,et al.  The yjdF riboswitch candidate regulates gene expression by binding diverse azaaromatic compounds , 2016, RNA.

[48]  T. Fukui,et al.  Evaluation of promoters for gene expression in polyhydroxyalkanoate-producing Cupriavidus necator H16 , 2011, Applied Microbiology and Biotechnology.

[49]  Dongrong Chen,et al.  Riboswitch control of induction of aminoglycoside resistance acetyl and adenyl-transferases , 2013, RNA biology.

[50]  J. Cronan,et al.  Escherichia coli thioesterase I, molecular cloning and sequencing of the structural gene and identification as a periplasmic enzyme. , 1993, The Journal of biological chemistry.

[51]  Jeff Hasty,et al.  The pedestrian watchmaker: Genetic clocks from engineered oscillators , 2009, FEBS letters.

[52]  Qipeng Yuan,et al.  Naringenin‐responsive riboswitch‐based fluorescent biosensor module for Escherichia coli co‐cultures , 2017, Biotechnology and bioengineering.

[53]  Bryn L Adams,et al.  The Next Generation of Synthetic Biology Chassis: Moving Synthetic Biology from the Laboratory to the Field. , 2016, ACS synthetic biology.

[54]  Robert Ferl,et al.  Plants in space. , 2002, Current opinion in plant biology.

[55]  Satya Prakash,et al.  Using RNA as Molecular Code for Programming Cellular Function. , 2016, ACS synthetic biology.

[56]  Jessica L. Terrell,et al.  Integrating artificial with natural cells to translate chemical messages that direct E. coli behaviour , 2014, Nature Communications.

[57]  Torsten Waldminghaus,et al.  Generation of synthetic RNA-based thermosensors , 2008, Biological chemistry.

[58]  Andrea L Edwards,et al.  Structural basis for recognition of S-adenosylhomocysteine by riboswitches. , 2010, RNA.

[59]  Laura R. Jarboe,et al.  The damaging effects of short chain fatty acids on Escherichia coli membranes , 2013, Applied Microbiology and Biotechnology.

[60]  T. W. Halstead,et al.  Plants in space. , 1987, Annual review of plant physiology.

[61]  M. C. Hammond,et al.  Engineering and In Vivo Applications of Riboswitches. , 2017, Annual review of biochemistry.

[62]  J. Gallivan,et al.  Guiding bacteria with small molecules and RNA. , 2007, Journal of the American Chemical Society.

[63]  Shilpi Khanna,et al.  Statistical media optimization studies for growth and PHB production by Ralstonia eutropha , 2005 .

[64]  V. Rada,et al.  Susceptibility ofEscherichia coli to C2-C18 fatty acids , 2008, Folia Microbiologica.

[65]  Antonis Papachristodoulou,et al.  Ribo-attenuators: novel elements for reliable and modular riboswitch engineering , 2017, Scientific Reports.

[66]  R. Murray,et al.  Design of a Toolbox of RNA Thermometers. , 2017, ACS synthetic biology.

[67]  Irene M Ong,et al.  Correcting direct effects of ethanol on translation and transcription machinery confers ethanol tolerance in bacteria , 2014, Proceedings of the National Academy of Sciences.

[68]  Juliane Neupert,et al.  Design of simple synthetic RNA thermometers for temperature-controlled gene expression in Escherichia coli , 2008, Nucleic acids research.

[69]  T. Steitz,et al.  The kink‐turn: a new RNA secondary structure motif , 2001, The EMBO journal.

[70]  James M. Wagner,et al.  RNA-aptamers-in-droplets (RAPID) high-throughput screening for secretory phenotypes , 2017, Nature Communications.

[71]  R. Breaker,et al.  Mechanism for gene control by a natural allosteric group I ribozyme. , 2011, RNA.

[72]  Raymond M. Wheeler,et al.  PLANTS FOR HUMAN LIFE SUPPORT IN SPACE: FROM MYERS TO MARS , 2010 .

[73]  S. K. Desai,et al.  Synthetic Riboswitches That Induce Gene Expression in Diverse Bacterial Species , 2010, Applied and Environmental Microbiology.

[74]  Seong-Wook Lee,et al.  Therapeutic Applications of Aptamer-Based Riboswitches. , 2016, Nucleic acid therapeutics.

[75]  D. Belin,et al.  Tight regulation, modulation, and high-level expression by vectors containing the arabinose PBAD promoter , 1995, Journal of bacteriology.

[76]  Tae Seok Moon,et al.  De novo design of heat-repressible RNA thermosensors in E. coli , 2015, Nucleic acids research.

[77]  M. Mergeay,et al.  Regulation of the cnr Cobalt and Nickel Resistance Determinant of Ralstonia eutropha (Alcaligenes eutrophus) CH34 , 2000, Journal of bacteriology.

[78]  D. Jendrossek,et al.  Localization of Poly(3-Hydroxybutyrate) (PHB) Granule-Associated Proteins during PHB Granule Formation and Identification of Two New Phasins, PhaP6 and PhaP7, in Ralstonia eutropha H16 , 2012, Journal of bacteriology.

[79]  D. Lafontaine,et al.  Folding of the lysine riboswitch: importance of peripheral elements for transcriptional regulation , 2010, Nucleic acids research.

[80]  I. Merfort,et al.  Anti-carcinogenic Effects of the Flavonoid Luteolin , 2008, Molecules.

[81]  G. Kneale,et al.  Attachment of a histidine tag to the minimal zinc finger protein of the Aspergillus nidulans gene regulatory protein AreA causes a conformational change at the DNA-binding site. , 2005, Protein expression and purification.

[82]  D. Lafontaine,et al.  Folding of the SAM-I riboswitch , 2012, RNA biology.

[83]  H. Schwalbe,et al.  Translation on demand by a simple RNA-based thermosensor , 2010, Nucleic acids research.

[84]  Beatrix Suess,et al.  Riboswitch engineering - making the all-important second and third steps. , 2015, Current opinion in biotechnology.

[85]  F. Narberhaus,et al.  Design of a Temperature-Responsive Transcription Terminator. , 2017, ACS synthetic biology.

[86]  T. Steitz,et al.  Insights into transcription: structure and function of single-subunit DNA-dependent RNA polymerases. , 2000, Current opinion in structural biology.

[87]  Harald Schwalbe,et al.  Modulation of the stability of the Salmonella fourU-type RNA thermometer , 2011, Nucleic acids research.

[88]  Igor Dodevski,et al.  RNA Thermometers for the PURExpress System. , 2017, ACS synthetic biology.

[89]  Xinyao Liu,et al.  Fatty acid production in genetically modified cyanobacteria , 2011, Proceedings of the National Academy of Sciences.

[90]  Zasha Weinberg,et al.  An Allosteric Self-Splicing Ribozyme Triggered by a Bacterial Second Messenger , 2010, Science.

[91]  Samy O Meroueh,et al.  Bacterial resistance to beta-lactam antibiotics: compelling opportunism, compelling opportunity. , 2005, Chemical reviews.

[92]  R. Breaker,et al.  Riboswitch Control of Gene Expression in Plants by Splicing and Alternative 3′ End Processing of mRNAs[W][OA] , 2007, The Plant Cell Online.

[93]  S. Karlin,et al.  Correlations between Shine-Dalgarno Sequences and Gene Features Such as Predicted Expression Levels and Operon Structures , 2002, Journal of bacteriology.

[94]  Santosh Kumar Jha,et al.  Kinetic evidence for a two-stage mechanism of protein denaturation by guanidinium chloride , 2014, Proceedings of the National Academy of Sciences.

[95]  Hilla Peretz,et al.  The , 1966 .

[96]  A. Serganov,et al.  Structural insights into ligand recognition by a sensing domain of the cooperative glycine riboswitch. , 2010, Molecular cell.

[97]  H. Atomi,et al.  Enzymatic Characterization of a Prokaryotic Urea Carboxylase , 2004, Journal of bacteriology.

[98]  T. Hisabori,et al.  Designing Synthetic Flexible Gene Regulation Networks Using RNA Devices in Cyanobacteria. , 2017, ACS synthetic biology.

[99]  Mark S Dunstan,et al.  Modular riboswitch toolsets for synthetic genetic control in diverse bacterial species. , 2014, Journal of the American Chemical Society.

[100]  Luis Serrano,et al.  Synthetic biology: promises and challenges , 2007, Molecular systems biology.

[101]  K. Mijnendonckx,et al.  Characterization of the Survival Ability of Cupriavidus metallidurans and Ralstonia pickettii from Space-Related Environments , 2012, Microbial Ecology.

[102]  A. Arkin,et al.  Towards synthetic biological approaches to resource utilization on space missions , 2015, Journal of The Royal Society Interface.

[103]  Zasha Weinberg,et al.  Widespread Genetic Switches and Toxicity Resistance Proteins for Fluoride , 2012, Science.

[104]  Søren J. Sørensen,et al.  The Effect of the lacY Gene on the Induction of IPTG Inducible Promoters, Studied in Escherichia coli and Pseudomonas fluorescens , 1998, Current Microbiology.

[105]  Q. Qi,et al.  Evolution of a chimeric aspartate kinase for L-lysine production using a synthetic RNA device , 2015, Applied Microbiology and Biotechnology.

[106]  H. van Tilbeurgh,et al.  Found: The Elusive ANTAR Transcription Antiterminator , 2012, PLoS genetics.

[107]  T. Denny Plant pathogenic Ralstonia species , 2007 .

[108]  L. L. Reed,et al.  Metabolism of nitrogen compounds by hydrogenomonas eutropha , 1967 .

[109]  W. Hess,et al.  A tightly inducible riboswitch system in Synechocystis sp. PCC 6803. , 2016, The Journal of general and applied microbiology.

[110]  R. Batey,et al.  Modularity of select riboswitch expression platforms enables facile engineering of novel genetic regulatory devices. , 2013, ACS synthetic biology.

[111]  F. Narberhaus,et al.  Bacterial RNA thermometers: molecular zippers and switches , 2012, Nature Reviews Microbiology.

[112]  Eduardo A. Groisman,et al.  Evolution of Transcriptional Regulatory Circuits in Bacteria , 2009, Cell.

[113]  Kazuhiro Nagahama,et al.  Construction and analysis of a recombinant cyanobacterium expressing a chromosomally inserted gene for an ethylene-forming enzyme at the psbAI locus. , 2003, Journal of bioscience and bioengineering.

[114]  R. Breaker,et al.  Riboswitches as versatile gene control elements. , 2005, Current opinion in structural biology.

[115]  Paul D. Carlson,et al.  Characterizing the Structure-Function Relationship of a Naturally Occurring RNA Thermometer. , 2017, Biochemistry.

[116]  Jonathan Perreault,et al.  Transcriptional pausing at the translation start site operates as a critical checkpoint for riboswitch regulation , 2017, Nature Communications.

[117]  Jason Micklefield,et al.  Orthogonal riboswitches for tuneable coexpression in bacteria. , 2012, Angewandte Chemie.

[118]  F. Narberhaus,et al.  Exploring the modular nature of riboswitches and RNA thermometers , 2016, Nucleic acids research.

[119]  A. Serganov,et al.  Themes and variations in riboswitch structure and function. , 2014, Biochimica et biophysica acta.

[120]  Jeffrey E. Barrick,et al.  Metabolite-binding RNA domains are present in the genes of eukaryotes. , 2003, RNA.

[121]  P. Cossart,et al.  An RNA Thermosensor Controls Expression of Virulence Genes in Listeria monocytogenes , 2002, Cell.

[122]  James W. Golden,et al.  Regulation of Gene Expression in Diverse Cyanobacterial Species by Using Theophylline-Responsive Riboswitches , 2014, Applied and Environmental Microbiology.

[123]  Natalie Leys,et al.  The response of Cupriavidus metallidurans CH34 to spaceflight in the international space station , 2009, Antonie van Leeuwenhoek.

[124]  T. Henkin,et al.  Crystal structures of the SAM-III/SMK riboswitch reveal the SAM-dependent translation inhibition mechanism , 2008, Nature Structural &Molecular Biology.

[125]  Joshua K. Michener,et al.  High-throughput enzyme evolution in Saccharomyces cerevisiae using a synthetic RNA switch. , 2012, Metabolic engineering.

[126]  R. Winter,et al.  Modulation of the Thermodynamic Signatures of an RNA Thermometer by Osmolytes and Salts. , 2017, Angewandte Chemie.

[127]  R. Gaur,et al.  An artificial riboswitch for controlling pre-mRNA splicing. , 2005, RNA.

[128]  S. Panke,et al.  Optimization of a whole-cell biocatalyst by employing genetically encoded product sensors inside nanolitre reactors. , 2015, Nature chemistry.

[129]  Ian R. Price,et al.  Mn(2+)-sensing mechanisms of yybP-ykoY orphan riboswitches. , 2015, Molecular cell.

[130]  Eyasu Shumbulo Shuba,et al.  Microalgae to biofuels: ‘Promising’ alternative and renewable energy, review , 2018 .

[131]  Dongrong Chen,et al.  Riboswitch Control of Aminoglycoside Antibiotic Resistance , 2013, Cell.

[132]  M Mergeay,et al.  Classification of metal-resistant bacteria from industrial biotopes as Ralstonia campinensis sp. nov., Ralstonia metallidurans sp. nov. and Ralstonia basilensis Steinle et al. 1998 emend. , 2001, International journal of systematic and evolutionary microbiology.

[133]  L. Rodrigues,et al.  Potential Applications of the Escherichia coli Heat Shock Response in Synthetic Biology. , 2017, Trends in biotechnology.

[134]  Xinrui Duan,et al.  An engineered riboswitch as a potential gene-regulatory platform for reducing antibacterial drug resistance. , 2011, Chemical communications.

[135]  D. Crothers,et al.  The speed of RNA transcription and metabolite binding kinetics operate an FMN riboswitch. , 2005, Molecular cell.