A polysaccharide from the human commensal Bacteroides fragilis protects against CNS demyelinating disease

[1]  F. Fåk,et al.  A Novel Probiotic Mixture Exerts a Therapeutic Effect on Experimental Autoimmune Encephalomyelitis Mediated by IL-10 Producing Regulatory T Cells , 2010, PloS one.

[2]  D. Foureau,et al.  Role of Gut Commensal Microflora in the Development of Experimental Autoimmune Encephalomyelitis1 , 2009, The Journal of Immunology.

[3]  K. Mills,et al.  CD11c+CD8α+ Dendritic Cells Promote Protective Immunity to Respiratory Infection with Bordetella pertussis1 , 2009, The Journal of Immunology.

[4]  S. Mazmanian,et al.  The gut microbiota shapes intestinal immune responses during health and disease , 2009, Nature Reviews Immunology.

[5]  Taeg S. Kim,et al.  Respiratory Dendritic Cell Subsets Differ in Their Capacity to Support the Induction of Virus-Specific Cytotoxic CD8+ T Cell Responses , 2009, PloS one.

[6]  T. Yamamura,et al.  Immunopathology and Infectious Diseases NKT Cell-Dependent Amelioration of a Mouse Model of Multiple Sclerosis by Altering Gut Flora , 2010 .

[7]  E. Zoetendal,et al.  High-throughput diversity and functionality analysis of the gastrointestinal tract microbiota , 2008, Gut.

[8]  Herman Goossens,et al.  Early intestinal Bacteroides fragilis colonisation and development of asthma , 2008, BMC pulmonary medicine.

[9]  L. Morelli Postnatal development of intestinal microflora as influenced by infant nutrition. , 2008, The Journal of nutrition.

[10]  F. Powrie,et al.  Dendritic cells in intestinal immune regulation , 2008, Nature Reviews Immunology.

[11]  S. Mazmanian,et al.  A microbial symbiosis factor prevents intestinal inflammatory disease , 2008, Nature.

[12]  D. Kasper,et al.  Microbial carbohydrate depolymerization by antigen-presenting cells: Deamination prior to presentation by the MHCII pathway , 2008, Proceedings of the National Academy of Sciences.

[13]  Taeg S. Kim,et al.  Differential Response of Respiratory Dendritic Cell Subsets to Influenza Virus Infection , 2008, Journal of Virology.

[14]  G. Radford-Smith,et al.  Hygiene hypothesis in inflammatory bowel disease: a critical review of the literature. , 2008, World journal of gastroenterology.

[15]  横手 裕明 NKT cell-dependent amelioration of a mouse model of multiple sclerosis by altering gut flora , 2008 .

[16]  Y. Belkaid,et al.  A functionally specialized population of mucosal CD103+ DCs induces Foxp3+ regulatory T cells via a TGF-β– and retinoic acid–dependent mechanism , 2007, The Journal of experimental medicine.

[17]  E. Zoetendal,et al.  Microbial communities in the human small intestine: coupling diversity to metagenomics. , 2007, Future microbiology.

[18]  D. Kasper,et al.  A bacterial carbohydrate links innate and adaptive responses through Toll-like receptor 2 , 2006, The Journal of experimental medicine.

[19]  S. Mazmanian,et al.  The love–hate relationship between bacterial polysaccharides and the host immune system , 2006, Nature Reviews Immunology.

[20]  K. Mills,et al.  A crucial role for interleukin (IL)-1 in the induction of IL-17–producing T cells that mediate autoimmune encephalomyelitis , 2006, The Journal of experimental medicine.

[21]  S. Nakae,et al.  IL-17 Plays an Important Role in the Development of Experimental Autoimmune Encephalomyelitis1 , 2006, The Journal of Immunology.

[22]  E. Zoetendal,et al.  A microbial world within us , 2006, Molecular microbiology.

[23]  D. Kasper,et al.  Modulation of surgical fibrosis by microbial zwitterionic polysaccharides. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[24]  Ying Wang,et al.  A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17 , 2005, Nature Immunology.

[25]  R. D. Hatton,et al.  Interleukin 17–producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages , 2005, Nature Immunology.

[26]  R. Gold,et al.  Therapeutic efficacy of IL-17 neutralization in murine experimental autoimmune encephalomyelitis. , 2005, Cellular immunology.

[27]  S. Mazmanian,et al.  An Immunomodulatory Molecule of Symbiotic Bacteria Directs Maturation of the Host Immune System , 2005, Cell.

[28]  H. Weiner,et al.  Induction of low dose oral tolerance in IL-10 deficient mice with experimental autoimmune encephalomyelitis. , 2004, Journal of autoimmunity.

[29]  Shimon Sakaguchi,et al.  IL-10 is involved in the suppression of experimental autoimmune encephalomyelitis by CD25+CD4+ regulatory T cells. , 2004, International immunology.

[30]  X. Montalban,et al.  Treatment with Anti-interferon-γ Monoclonal Antibodies Modifies Experimental Autoimmune Encephalomyelitis in Interferon-γ Receptor Knockout Mice , 2001, Experimental Neurology.

[31]  X. Montalban,et al.  Treatment with anti-interferon-gamma monoclonal antibodies modifies experimental autoimmune encephalomyelitis in interferon-gamma receptor knockout mice. , 2001, Experimental neurology.

[32]  S. Wittmer,et al.  Failure to Suppress the Expansion of the Activated Cd4 T Cell Population in Interferon γ–Deficient Mice Leads to Exacerbation of Experimental Autoimmune Encephalomyelitis , 2000, The Journal of experimental medicine.

[33]  R. Ransohoff,et al.  Cutting Edge Commentary: Chemokine Regulation of Experimental Autoimmune Encephalomyelitis: Temporal and Spatial Expression Patterns Govern Disease Pathogenesis , 1998, The Journal of Immunology.

[34]  H. Weiner,et al.  IL-10 is critical in the regulation of automimmune encephalomyelitis as demonstrated by studies of IL-10 and IL-4 deficient and transgenic mice , 1998, Journal of Neuroimmunology.

[35]  W. Cowden,et al.  IFN-gamma plays a critical down-regulatory role in the induction and effector phase of myelin oligodendrocyte glycoprotein-induced autoimmune encephalomyelitis. , 1996, Journal of immunology.

[36]  L. Steinman,et al.  Mice with a disrupted IFN-gamma gene are susceptible to the induction of experimental autoimmune encephalomyelitis (EAE). , 1996, Journal of immunology.

[37]  F. Finkelman,et al.  Effect of anti-interferon-γ monoclonal antibody treatment on the development of experimental allergic encephalomyelitis in resistant mouse strains , 1994, Journal of Neuroimmunology.

[38]  B. Uitdehaag,et al.  Suppression of experimental allergic encephalomyelitis by intraventricular administration of interferon‐gamma in Lewis rats , 1990, Clinical and experimental immunology.

[39]  A. Billiau,et al.  Enhancement of experimental allergic encephalomyelitis in mice by antibodies against IFN-gamma. , 1988, Journal of immunology.