Homotopy Theory of Higher Categories: THE MODEL STRUCTURE

This is the first draft of a book about higher categories approached by iterating Segal's method, as in Tamsamani's definition of $n$-nerve and Pelissier's thesis. If $M$ is a tractable left proper cartesian model category, we construct a tractable left proper cartesian model structure on the category of $M$-precategories. The procedure can then be iterated, leading to model categories of $(\infty , n)$-categories.

[1]  W. Dwyer,et al.  Homotopy Limit Functors on Model Categories and Homotopical Categories , 2005 .

[2]  Myles Tierney,et al.  Quasi-categories vs Segal spaces , 2006 .

[3]  A tensor product for Gray-categories. , 1999 .

[4]  Jean-Louis Loday,et al.  Spaces with finitely many non-trivial homotopy groups , 1982 .

[5]  L. Breen Monoidal Categories and Multiextensions , 1998, Compositio Mathematica.

[6]  J. Pridham Pro‐algebraic homotopy types , 2006, math/0606107.

[7]  Carlos Simpson Homotopy types of strict 3-groupoids , 1998 .

[8]  I. James REDUCED PRODUCT SPACES , 1955 .

[9]  Clark Barwick,et al.  On left and right model categories and left and right Bousfield localizations , 2010 .

[10]  Ronald Brown Groupoids and crossed objects in algebraic topology , 1999 .

[11]  Philip S. Hirschhorn,et al.  Model categories and more general abstract homotopy theory , 1997 .

[12]  Mark Hovey,et al.  Monoidal model categories , 1998, math/9803002.

[13]  The topological realization of a simplicial presheaf , 1996, q-alg/9609004.

[14]  L. Lewis Is there a convenient category of spectra , 1991 .

[15]  The Eckmann–Hilton argument and higher operads , 2002, math/0207281.

[16]  Denis-Charles Cisinski Batanin higher groupoids and homotopy types , 2006 .

[17]  Algebraic theories in homotopy theory , 2001, math/0110101.

[18]  Julia E. Bergner,et al.  THREE MODELS FOR THE HOMOTOPY THEORY OF HOMOTOPY THEORIES , 2005, math/0504334.

[19]  V. Voevodsky The Milnor Conjecture , 1996 .

[20]  Kenneth S. Brown,et al.  Abstract homotopy theory and generalized sheaf cohomology , 1973 .

[21]  G. Kondratiev Concrete Duality for Strict Infinity Categories , 2008, 0807.4256.

[22]  J. Penon,et al.  Approche polygraphique des ∞-catégories non strictes , 1999 .

[23]  Completions of mapping class groups and the cycle $C - C^-$ , 1992, alg-geom/9207001.

[24]  Denis-Charles Cisinski,et al.  Les Pr'efaisceaux comme mod`eles des types d''homotopie , 2002 .

[25]  Marco Grandis Directed homotopy theory, I. The fundamental category , 2001 .

[26]  Dominique Bourn La tour de fibrations exactes des $n$-catégories , 1984 .

[27]  W. Dwyer,et al.  HOMOTOPY COMMUTATIVE DIAGRAMS AND THEIR REALIZATIONS , 1989 .

[28]  Charles Ehresmann,et al.  Cahiers de topologie et géometrie différentielle , 1982 .

[29]  Joachim Kock,et al.  Weak units and homotopy 3-types , 2006 .

[30]  Graeme Segal,et al.  Configuration-spaces and iterated loop-spaces , 1973 .

[31]  Denis-Charles Cisinski PROPRIÉTÉS UNIVERSELLES ET EXTENSIONS DE KAN DÉRIVÉES , 2008 .

[32]  Eugenia Cheng The category of opetopes and the category of opetopic sets. , 2003 .

[33]  Marek W. Zawadowski Lax monoidal fibrations , 2009, 0912.4464.

[34]  Zouhair Tamsamani,et al.  Sur des notions de n-catégorie et n-groupoi͏̈de non strictes via des ensembles multi-simpliciaux , 1996 .

[35]  G. Ellis Spaces with finitely many non-trivial homotopy groups all of which are finite , 1997 .

[36]  A homotopy theory for stacks , 2001, math/0110247.

[37]  Loring W. Tu,et al.  Differential forms in algebraic topology , 1982, Graduate texts in mathematics.

[38]  N. D. Gilbert,et al.  Homotopy Coherent Category Theory , 1996 .

[39]  Rigidification of algebras over multi-sorted theories , 2005, math/0508152.

[40]  B. Shipley,et al.  Equivalences of monoidal model categories , 2002, math/0209342.

[41]  Albert Schwarz,et al.  Elements of Homotopy Theory , 1993 .

[42]  Jon P. May,et al.  THE UNIQUENESS OF INFINITE LOOP SPACE MACHINES , 1978 .

[43]  P. J. Higgins,et al.  The classifying space of a crossed complex , 1991, Mathematical Proceedings of the Cambridge Philosophical Society.

[44]  Cahiers DE Topologie,et al.  Cat as a closed model category , 1980 .

[45]  Aaron D. Lauda,et al.  Higher-dimensional categories: an illustrated guide book , 2004 .

[46]  N. D. Gilbert,et al.  Algebraic Models of 3‐Types and Automorphism Structures for Crossed Modules , 1989 .

[47]  W. Dwyer,et al.  Calculating simplicial localizations , 1980 .

[48]  Alexander Grothendieck,et al.  Pursuing Stacks , 2021, 2111.01000.

[49]  J. Benabou Introduction to bicategories , 1967 .

[50]  Michael Batanin,et al.  Monoidal Globular Categories As a Natural Environment for the Theory of Weakn-Categories☆ , 1998 .

[51]  J. Whitehead On the asphericity of regions in a 3-sphere , 1939 .

[52]  K. Hess Rational homotopy theory , 2011 .

[53]  L. Breen On the classification of 2-gerbes and 2-stacks , 1994 .

[54]  T. Leinster A survey of definitions of -category. , 2002 .

[55]  J. Lurie (Infinity,2)-Categories and the Goodwillie Calculus I , 2009, 0905.0462.

[56]  Ronald Brown,et al.  Van Kampen theorems for diagrams of spaces , 1987 .

[57]  V. Drinfeld DG quotients of DG categories , 2002, math/0210114.

[58]  P. Deligne Theorie de Hodge I , 1970 .

[59]  Double loop spaces, braided monoidal categories and algebraic 3-type of space , 2007 .

[60]  Clark Barwick,et al.  On Reedy Model Categories , 2007, 0708.2832.

[61]  COMPUTING HOMOTOPY TYPES USING CROSSED N-CUBES OF GROUPS ∗ , 2001, math/0109091.

[62]  J. Charles,et al.  A Sino-German λ 6 cm polarization survey of the Galactic plane I . Survey strategy and results for the first survey region , 2006 .

[63]  Joachim Kock,et al.  Elementary remarks on units in monoidal categories , 2005, Mathematical Proceedings of the Cambridge Philosophical Society.

[64]  Oachim,et al.  Weak identity arrows in higher categories , 2005 .

[65]  M. Kapranov On the derived categories of coherent sheaves on some homogeneous spaces , 1988 .

[66]  Bernhard Keller,et al.  Deriving DG categories , 1994 .

[67]  Clemens Berger,et al.  A Cellular Nerve for Higher Categories , 2002 .

[68]  André Joyal,et al.  Quasi-categories and Kan complexes , 2002 .

[69]  C. L. REEDY,et al.  HOMOTOPY THEORY OF MODEL CATEGORIES , 1974 .

[70]  Maxim Kontsevich,et al.  Homological Algebra of Mirror Symmetry , 1994, alg-geom/9411018.

[71]  J. P. May,et al.  The geometry of iterated loop spaces , 1972 .

[72]  Tom Leinster Higher Operads, Higher Categories , 2003 .

[73]  C. Barwick On (Enriched) Left Bousfield Localization of Model Categories , 2007, 0708.2067.

[74]  Jim Stasheff,et al.  Homotopy associativity of $H$-spaces. II , 1963 .

[75]  J. Rosick´y On Homotopy Varieties , 2005 .

[76]  Syunji Moriya Rational homotopy theory and differential graded category , 2008, 0810.0808.

[77]  J. Bergner Homotopy fiber products of homotopy theories , 2008, 0811.3175.

[78]  B. Toën Champs affines , 2006 .

[79]  Eugenia Cheng,et al.  An ω-category with all Duals is an ω-groupoid , 2007, Appl. Categorical Struct..

[80]  C. Rezk,et al.  A cartesian presentation of weak n–categories , 2009, 0901.3602.

[81]  W. Dwyer,et al.  Function complexes in homotopical algebra , 1980 .

[82]  D. M. Kan,et al.  A COMBINATORIAL DEFINITION OF HOMOTOPY GROUPS , 1958 .

[83]  M. Batanin,et al.  Algebras of higher operads as enriched categories II , 2009, 0909.4715.

[84]  Philip S. Hirschhorn Model categories and their localizations , 2003 .

[85]  D. Mumford,et al.  The irreducibility of the space of curves of given genus , 1969 .

[86]  J. May Classifying Spaces And Fibrations , 1975 .

[87]  Spherical 2-Categories and 4-Manifold Invariants☆ , 1998, math/9805030.

[88]  Vladimir Hinich Homological algebra of homotopy algebras , 1997 .

[89]  H. Baues Combinatorial homotopy and 4-dimensional complexes , 1990 .

[90]  J. Cordier Comparaison de deux catégories d'homotopie de morphismes cohérents , 1989 .

[91]  F. W. Lawvere,et al.  FUNCTORIAL SEMANTICS OF ALGEBRAIC THEORIES. , 1963, Proceedings of the National Academy of Sciences of the United States of America.

[92]  M. Artin,et al.  Versal deformations and algebraic stacks , 1974 .

[93]  W. Dwyer,et al.  Simplicial localizations of categories , 1980 .

[94]  Julia E. Bergner A model category structure on the category of simplicial categories , 2004 .

[95]  William S. Massey,et al.  Algebraic Topology: An Introduction , 1977 .

[96]  J. M. Boardman,et al.  Homotopy Invariant Algebraic Structures on Topological Spaces , 1973 .

[97]  R. Hain The de Rham homotopy theory of complex algebraic varieties II , 1987 .

[98]  Jirí Adámek,et al.  Abstract and Concrete Categories - The Joy of Cats , 1990 .

[99]  John C. Baez,et al.  Towards Higher Categories , 2010 .

[100]  J. Bergner ADDING INVERSES TO DIAGRAMS ENCODING ALGEBRAIC STRUCTURES , 2006, math/0610291.

[101]  Ronald Brown,et al.  Homotopical Excision, and Hurewicz Theorems, for n-Cubes of Spaces , 1987 .

[102]  M. Kapranov,et al.  ENHANCED TRIANGULATED CATEGORIES , 1991 .

[103]  B. Toën,et al.  Algebraic and topological aspects of the schematization functor , 2005, Compositio Mathematica.

[104]  W. Dwyer,et al.  CHAPTER 2 – Homotopy Theories and Model Categories , 1995 .

[105]  Gonçalo Tabuada Homotopy theory of Spectral categories , 2008, 0801.4524.

[106]  E. Curtis Some Relations Between Homotopy and Homology , 1965 .

[107]  Michael Makkai,et al.  Accessible categories: The foundations of categorical model theory, , 2007 .

[108]  John C. Baez An Introduction to n-Categories , 1997, Category Theory and Computer Science.

[109]  P. J. Higgins,et al.  The equivalence of ∞-groupoids and crossed complexes , 2007 .

[110]  J. Rosický,et al.  On Combinatorial Model Categories , 2007, Appl. Categorical Struct..

[111]  Daniel M. Kan,et al.  ON c. s. s. COMPLEXES. , 1957 .

[112]  J. Adams,et al.  Infinite Loop Spaces , 1978 .

[113]  Steven P. Abney,et al.  Bootstrapping , 2002, ACL.

[114]  Régis Pellissier Catégories enrichies faibles , 2002 .

[115]  A. Grothendieck,et al.  Revêtements étales et groupe fondamental (SGA 1) , 2002, math/0206203.

[116]  Peter Gabriel,et al.  Calculus of Fractions and Homotopy Theory , 1967 .

[117]  Gonçalo Tabuada Differential graded versus Simplicial categories , 2007, 0711.3845.

[118]  J. Lurie Higher Topos Theory , 2006, math/0608040.

[119]  C. Simpson Effective generalized Seifert-Van Kampen: how to calculate $ΩX$ , 1997 .

[120]  James Dolan,et al.  Higher-Dimensional Algebra III: n-Categories and the Algebra of Opetopes , 1997 .

[121]  Michael Johnson,et al.  The combinatorics of n-categorical pasting☆ , 1989 .

[122]  J. Baez,et al.  Higher dimensional algebra and topological quantum field theory , 1995, q-alg/9503002.

[123]  E. Riehl On the structure of simplicial categories associated to quasi-categories , 2009, Mathematical Proceedings of the Cambridge Philosophical Society.

[124]  Weak Omega Categories I , 2004, math/0404216.

[125]  R. Vogt,et al.  Homotopy homomorphisms and the hammock localization , 1992 .

[126]  Daniel M. Kani ON HOMOTOPY THEORY AND C.S.S. GROUPS , 1958 .

[127]  R. Thomason Uniqueness of delooping machines , 1979 .

[128]  P. J. Higgins,et al.  The equivalence of $\infty$-groupoids and crossed complexes , 1981 .

[129]  A. Stanculescu A homotopy theory for enrichment in simplicial modules , 2007, 0712.1319.

[130]  Pierre Deligne,et al.  Hodge Cycles, Motives, and Shimura Varieties , 1989 .

[131]  R. Thomason Algebraic $K$-theory and etale cohomology , 1985 .

[132]  Georges Maltsiniotis,et al.  La théorie de l'homotopie de grothendieck , 2005 .

[133]  Jon P. May Simplicial objects in algebraic topology , 1993 .

[134]  Ross Street,et al.  The algebra of oriented simplexes , 1987 .

[135]  George Janelidze,et al.  Precategories and Galois theory , 1991 .

[136]  A CHARACTERIZATION OF FIBRANT SEGAL CATEGORIES , 2006, math/0603400.

[137]  Philippe Gaucher,et al.  Homotopy invariants of higher dimensional categories and concurrency in computer science , 1999, Mathematical Structures in Computer Science.

[138]  Edgar H. Brown,et al.  FINITE COMPUTABILITY OF POSTNIKOV COMPLEXES , 1957 .

[139]  P. T. Johnstone,et al.  BASIC CONCEPTS OF ENRICHED CATEGORY THEORY (London Mathematical Society Lecture Note Series, 64) , 1983 .

[140]  Tom Leinster A Survey of Definitions of n-Category , 2001 .

[141]  J. G. Cabello,et al.  Closed model structures for algebraic models of n-types , 1995 .

[142]  Combinatorial Model Categories Have Presentations , 2000, math/0007068.

[143]  Charles Rezk,et al.  A model for the homotopy theory of homotopy theory , 1998, math/9811037.

[144]  Alexander Grothendieck,et al.  Sur quelques points d'algèbre homologique, I , 1957 .

[145]  Joachim Kock,et al.  Polynomial functors and opetopes , 2007, 0706.1033.

[146]  Vladimir Voevodsky,et al.  A1-homotopy theory of schemes , 1999 .

[147]  Jean-Marc Cordier,et al.  Vogt's theorem on categories of homotopy coherent diagrams , 1986, Mathematical Proceedings of the Cambridge Philosophical Society.

[148]  Claudio Hermida,et al.  On weak higher dimensional categories I: Part 1 ( , 2000 .

[149]  Clemens Berger Iterated wreath product of the simplex category and iterated loop spaces , 2007 .

[150]  G. Segal,et al.  Categories and cohomology theories , 1974 .

[151]  A. Grothendieck Revetements etales et groupe fondamental , 1971 .

[152]  Simplicial monoids and Segal categories , 2005, math/0508416.

[153]  Carlos Simpson A closed model structure for $n$-categories, internal $Hom$, $n$-stacks and generalized Seifert-Van Kampen , 1997 .

[154]  G. M. Kelly,et al.  BASIC CONCEPTS OF ENRICHED CATEGORY THEORY , 2022, Elements of ∞-Category Theory.

[155]  Sjoerd E. Crans,et al.  Quillen closed model structures for sheaves , 1995 .

[156]  Vladimir A. Smirnov,et al.  The homology of iterated loop spaces , 2000 .

[157]  D. Mcduff On the classifying spaces of discrete monoids , 1979 .

[158]  Tibor Beke,et al.  Sheafifiable homotopy model categories , 2000, Mathematical Proceedings of the Cambridge Philosophical Society.

[159]  Mark Weber,et al.  Yoneda Structures from 2-toposes , 2007, Appl. Categorical Struct..

[160]  D. M. Kan,et al.  Homotopy Limits, Completions and Localizations , 1987 .

[161]  M. Makkai,et al.  A note on the Penon definition of $n$-category , 2009, 0907.3961.

[162]  Dominic R. Verity Weak complicial sets I. Basic homotopy theory , 2008 .

[163]  E. Curtis Lower central series of semi-simplicial complexes , 1963 .

[164]  Weakly globular catn-groups and Tamsamani's model , 2009 .

[165]  Marco Grandis,et al.  Directed homotopy theory, I , 2003 .

[166]  Eugenia Cheng Comparing operadic theories of $n$-category , 2008, 0809.2070.

[167]  Mark Weber,et al.  Algebras of Higher Operads as Enriched Categories , 2008, Appl. Categorical Struct..

[168]  D. Bourn,et al.  A general formulation of homotopy limits , 1983 .

[169]  M. Batanin Homotopy coherent category theory and A∞-structures in monoidal categories , 1998 .

[170]  Paul G. Goerss,et al.  Simplicial Homotopy Theory , 2009, Modern Birkhäuser Classics.

[171]  W. Tholen,et al.  Left-determined model categories and universal homotopy theories , 2003 .

[172]  M. Batanin On the Penon method of weakening algebraic structures , 2002 .

[173]  Z. Fiedorowicz Classifying Spaces of Topological Monoids and Categories , 1984 .

[174]  G. Dunn Uniqueness of n-fold delooping machines , 1996 .

[175]  J. M. Boardman,et al.  Homotopy-everything $H$-spaces , 1968 .

[176]  Benjamin A. Blander Local Projective Model Structures on Simplicial Presheaves , 2001 .

[177]  B. Jurčo,et al.  The classifying topos of a topological bicategory , 2009, 0902.1750.

[178]  Ieke Moerdijk,et al.  On an extension of the notion of Reedy category , 2008, 0809.3341.

[179]  Shirley Dex,et al.  JR 旅客販売総合システム(マルス)における運用及び管理について , 1991 .

[180]  J. Benabou,et al.  SIMPLICIAL MATRICES AND THE NERVES OF WEAK n-CATEGORIES I : NERVES OF BICATEGORIES , 2002 .