Heat kernels on forms defined on a subgraph of a complete graph

We study the heat kernel expansion of the Laplacian on n-forms defined on a subgraph of a directed complete graph. We derive two expressions for the subgraph heat kernel on 0-forms and compute the coefficients of the expansion. We also obtain the subgraph heat kernel of the Laplacian on 1-forms.

[1]  S. Yau,et al.  Homotopy theory for digraphs , 2014, 1407.0234.

[2]  Oliver Knill,et al.  A graph theoretical Gauss-Bonnet-Chern Theorem , 2011, ArXiv.

[3]  S. Minakshisundaram,et al.  Eigenfunctions on Riemannian Manifolds , 1953 .

[4]  A. Karlsson,et al.  Heat kernels on regular graphs and generalized Ihara zeta function formulas , 2013, 1302.4644.

[5]  Fan Chung,et al.  Spectral Graph Theory , 1996 .

[6]  S. Minakshisundaram,et al.  Some Properties of the Eigenfunctions of The Laplace-Operator on Riemannian Manifolds , 1949, Canadian Journal of Mathematics.

[7]  S. Yau,et al.  Cohomology of digraphs and (undirected) graphs , 2015 .

[8]  F. Chung A combinatorial trace formula ∗ , 2022 .

[9]  S. Yau,et al.  On the path homology theory of digraphs and Eilenberg–Steenrod axioms , 2018 .

[10]  A. Grigor’yan,et al.  Sub-Gaussian estimates of heat kernels on infinite graphs, to appera in Duke Math , 2001 .

[11]  Shirley Dex,et al.  JR 旅客販売総合システム(マルス)における運用及び管理について , 1991 .

[12]  A. Douady,et al.  Coverings , 2020, Algebra and Galois Theories.

[13]  H. McKean,et al.  Curvature and the Eigenvalues of the Laplacian , 1967 .

[14]  Shing-Tung Yau,et al.  Coverings, Heat Kernels and Spanning Trees , 1998, Electron. J. Comb..

[15]  Oliver Knill,et al.  The McKean-Singer Formula in Graph Theory , 2013, ArXiv.

[16]  S. Yau,et al.  Homologies of digraphs and Künneth formulas , 2017 .

[17]  M. Berger,et al.  Le Spectre d'une Variete Riemannienne , 1971 .

[18]  V. K. Patodi Curvature and the eigenforms of the Laplace operator , 1971 .

[19]  S. Yau,et al.  On a cohomology of digraphs and Hochschild cohomology , 2016 .