Impacts of Ce3+ doping on temperature sensing characteristics of LuAG: Yb3+/Ho3+ up-conversion fluorescent materials

[1]  Jian Wang,et al.  Effects of Yb3+ Concentration on Up-Conversion Luminescence and Temperature Sensing Characteristics of Tm3+/Yb3+:Y2o3 Phosphor , 2022, SSRN Electronic Journal.

[2]  X. Tao,et al.  Exploring promising up-conversion luminescence single crystal fiber in sesquioxide family for high temperature optical thermometry application , 2022 .

[3]  X. Tao,et al.  Sensitive Ho3+,Yb3+ co-doped mixed sesquioxide single crystal fibers thermometry based on upconversion luminescence , 2022, Journal of Alloys and Compounds.

[4]  J. Qiu,et al.  Optical temperature sensing characteristics of Sm3+ doped YAG single crystal fiber based on luminescence emission , 2022, Journal of Alloys and Compounds.

[5]  J. Qiu,et al.  Optical temperature sensing properties of Tm3+/Yb3+ co-doped LuAG polycrystalline phosphor based on up-conversion luminescence , 2021, Journal of Luminescence.

[6]  J. Qiu,et al.  Improved temperature sensing performance of YAG: Ho3+/Yb3+ by doping Ce3+ ions based on up-conversion luminescence , 2020 .

[7]  V. Lavín,et al.  Luminescent Nanothermometer Operating at Very High Temperature—Sensing up to 1000 K with Upconverting Nanoparticles (Yb3+/Tm3+) , 2020, ACS applied materials & interfaces.

[8]  Jia Zhang,et al.  Highly sensitive optical temperature sensing based on upconversion luminescence in Gd9.33(SiO4)6O2:Yb3+-Er3+/Ho3+ phosphors. , 2020, Dalton transactions.

[9]  M. Mahata,et al.  Upconversion photoluminescence of Ho3+-Yb3+ doped barium titanate nanocrystallites: Optical tools for structural phase detection and temperature probing , 2020, Scientific Reports.

[10]  X. Yao,et al.  Optical temperature sensing of up-conversion luminescent materials: Fundamentals and progress , 2020 .

[11]  Jinsheng Liao,et al.  Tunable upconversion luminescence and optical temperature sensing based on non-thermal coupled levels of Lu3NbO7:Yb3+/Ho3+ phosphors , 2019, Optical Materials.

[12]  Ni An,et al.  Up-conversion luminescence characteristics and temperature sensing of Y2O3: Ho3+/Yb3+ single crystal fiber , 2019, Journal of Luminescence.

[13]  Ni An,et al.  Wide-range temperature sensor based on enhanced up-conversion luminescence in Er3+/Yb3+ co-doped Y2O3 crystal fiber , 2019, Optical Fiber Technology.

[14]  Hua Yu,et al.  Excellent temperature sensing characteristics of europium ions self-reduction Sr3P4O13 phosphors for ratiometric luminescence thermometer , 2019, Journal of Alloys and Compounds.

[15]  Li-Gang Wang,et al.  Sensitivity-enhanced Tm 3+ /Yb 3+ co-doped YAG single crystal optical fiber thermometry based on upconversion emissions , 2018 .

[16]  Jing Ren,et al.  Spectroscopic properties of Ce3+/Yb3+/Ho3+ triply doped bismuthate glasses , 2017 .

[17]  Xueru Zhang,et al.  Improving sensing sensitivity of Er/Yb co-doped NaYF4 nanorods via selecting non-thermally-coupled levels , 2017, Journal of Materials Science: Materials in Electronics.

[18]  Jintai Fan,et al.  Co-precipitation synthesis of lutetium aluminum garnet (LuAG) powders: The influence of ethanol , 2017 .

[19]  Xiaodan Hu,et al.  Preparation and up-conversion characterization of CaF2:Yb3+, Ho3+/BaF2:Yb3+, Ho3+ co-doped glasses and glass–ceramics , 2015 .

[20]  Chao Zhang,et al.  Lanthanide Nanoparticles: From Design toward Bioimaging and Therapy. , 2015, Chemical reviews.

[21]  Chun-Hua Yan,et al.  Energy transfer in lanthanide upconversion studies for extended optical applications. , 2015, Chemical Society reviews.

[22]  Shilong Zhao,et al.  Optical spectroscopic studies on GdF3:Tb3+,Yb3+ nanocrystals , 2014 .

[23]  Li Dai,et al.  The effect of In3+ doping on the optical characteristics of Ho:LiNbO3 crystals , 2013 .

[24]  Daniel R. Gamelin,et al.  Dual-Emitting Nanoscale Temperature Sensors , 2013 .

[25]  Yanqing Hua,et al.  A NaYbF4: Tm3+ nanoprobe for CT and NIR-to-NIR fluorescent bimodal imaging. , 2012, Biomaterials.

[26]  Renren Deng,et al.  Tuning upconversion through energy migration in core-shell nanoparticles. , 2011, Nature materials.

[27]  Günter Huber,et al.  Thermal and laser properties of Yb:LuAG for kW thin disk lasers. , 2010, Optics express.

[28]  Wei-ping Zhang,et al.  Cooperative energy transfer in Eu3+, Yb3+ codoped Y2O3 phosphor , 2010 .

[29]  Zhiguo Zhang,et al.  Upconversion emission tuning from green to red in Yb3+/Ho3+-codoped NaYF4 nanocrystals by tridoping with Ce3+ ions , 2009, Nanotechnology.

[30]  Meng Wang,et al.  Immunolabeling and NIR-excited fluorescent imaging of HeLa cells by using NaYF(4):Yb,Er upconversion nanoparticles. , 2009, ACS nano.

[31]  Vineet Kumar Rai,et al.  A comparative study of FIR and FL based temperature sensing schemes: an example of Pr3+ , 2007 .

[32]  Yadong Li,et al.  Green upconversion nanocrystals for DNA detection. , 2006, Chemical communications.

[33]  S. Wade,et al.  Fluorescence intensity ratio technique for optical fiber point temperature sensing , 2003 .

[34]  Markus P. Hehlen,et al.  Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems , 2000 .

[35]  Lyuji Ozawa Determination of Self‐Concentration Quenching Mechanisms of Rare Earth Luminescence from Intensity Measurements on Powdered Phosphor Screens , 1979 .

[36]  C. Struck,et al.  Thermal Quenching of Tb+3, Tm+3, Pr+3, and Dy+3 4fn Emitting States in La2 O2 S , 1971 .

[37]  Kai Han,et al.  The role of 2-ethylhexanoic acid in manipulating the morphology and upconversion of flame-made Y2O3:Yb3+/Ho3+ nanoparticles towards remote temperature sensing , 2022, CrystEngComm.

[38]  Li-Gang Wang,et al.  Compact and sensitive Er 3+ /Yb 3+ co-doped YAG single crystal optical fiber thermometry based on up-conversion luminescence , 2018 .