Geometry and dynamics of one-norm geometric quantum discord

We investigate the geometry of one-norm geometric quantum discord and present a geometric interpretation of one-norm geometric quantum discord for a class of two-qubit states. It is found that one-norm geometric quantum discord has geometric behavior different from that described in Lang and Caves (Phys Rev Lett 105:150501, 2010), Li et al. (Phys Rev A 83:022321, 2011) and Yao et al. (Phys Lett A 376:358–364, 2012). We also compare the dynamics of the one-norm geometric quantum discord and other measures of quantum correlations under correlated noise. It is shown that different decoherent channels bring different influences to quantum correlations measured by concurrence, entropic quantum discord and geometric quantum discord, which depend on the memory parameter and decoherence parameter. We lay emphasis on the behaviors such as entanglement sudden death and sudden transition of quantum discord. Finally, we study the dynamical behavior of one-norm geometric quantum discord in one-dimensional anisotropic XXZ model by utilizing the quantum renormalization group method. It is shown that the one-norm geometric quantum discord demonstrates quantum phase transition through renormalization group approach.

[1]  Li-Xiang Cen,et al.  Necessary and sufficient conditions for the freezing phenomena of quantum discord under phase damping , 2012 .

[2]  R. Jafari,et al.  Renormalization of entanglement in the anisotropic Heisenberg ( X X Z ) model , 2007, 0711.2358.

[3]  Ujjwal Sen,et al.  Freezing of quantum correlations under local decoherence , 2015 .

[4]  Liu Ye,et al.  Negativity and quantum phase transition in the anisotropic XXZ model , 2013 .

[5]  T. Paterek,et al.  The classical-quantum boundary for correlations: Discord and related measures , 2011, 1112.6238.

[6]  S. Fei,et al.  Quantum Discord and Geometry for a Class of Two-qubit States , 2011, 1104.1843.

[7]  C. H. Bennett,et al.  Quantum nonlocality without entanglement , 1998, quant-ph/9804053.

[8]  M. S. Sarandy Classical correlation and quantum discord in critical systems , 2009, 0905.1347.

[9]  B. Lanyon,et al.  Experimental quantum computing without entanglement. , 2008, Physical review letters.

[10]  D. Chruściński,et al.  Witnessing quantum discord in 2 x N systems , 2010, 1004.0434.

[11]  M. S. Sarandy,et al.  Quantum Discord in the Ground State of Spin Chains , 2012, 1208.4817.

[12]  Andrew Skeen,et al.  Time-correlated quantum amplitude-damping channel , 2003 .

[13]  Pramod S. Joag,et al.  Tight lower bound to the geometric measure of quantum discord , 2010, 1010.1920.

[14]  Zhe Sun,et al.  Geometric measure of quantum discord under decoherence , 2010, Quantum Inf. Comput..

[15]  G. Adesso,et al.  Comparative investigation of the freezing phenomena for quantum correlations under nondissipative decoherence , 2013, 1304.1163.

[16]  A. Acín,et al.  Almost all quantum states have nonclassical correlations , 2009, 0908.3157.

[17]  M. Paris,et al.  Gaussian quantum discord. , 2010, Physical review letters.

[18]  F. M. Paula,et al.  One-norm geometric quantum discord under decoherence , 2013, 1303.5110.

[19]  W. Zurek,et al.  Quantum discord: a measure of the quantumness of correlations. , 2001, Physical review letters.

[20]  T. Paterek,et al.  Unified view of quantum and classical correlations. , 2009, Physical review letters.

[21]  K. Wilson The renormalization group: Critical phenomena and the Kondo problem , 1975 .

[22]  W. Wootters Entanglement of Formation of an Arbitrary State of Two Qubits , 1997, quant-ph/9709029.

[23]  David Reich,et al.  Comment on "Ongoing Adaptive Evolution of ASPM, a Brain Size Determinant in Homo sapiens" , 2007, Science.

[24]  Jonas Maziero,et al.  THEORETICAL AND EXPERIMENTAL ASPECTS OF QUANTUM DISCORD AND RELATED MEASURES , 2011, 1107.3428.

[25]  DaeKil Park,et al.  Difficulties in analytic computation for relative entropy of entanglement , 2010, 1002.4695.

[26]  V. Vedral,et al.  Classical, quantum and total correlations , 2001, quant-ph/0105028.

[27]  Preeti Parashar,et al.  Tight lower bound on geometric discord of bipartite states , 2012 .

[28]  Bo Wang,et al.  Non-Markovian effect on the quantum discord , 2009, 0911.1845.

[29]  Č. Brukner,et al.  Necessary and sufficient condition for nonzero quantum discord. , 2010, Physical review letters.

[30]  A. Datta,et al.  Quantum versus classical correlations in Gaussian states. , 2010, Physical review letters.

[31]  Fu-Guo Deng,et al.  Geometric measure of quantum discord for a two-parameter class of states in a qubit–qutrit system under various dissipative channels , 2012, Quantum Inf. Process..

[32]  Ting Yu,et al.  The End of an Entanglement , 2007, Science.

[33]  V. Vedral,et al.  Classical and quantum correlations under decoherence , 2009, 0905.3396.

[34]  Zheng-Fu Han,et al.  Geometric interpretation of the geometric discord , 2012, 1303.4827.

[35]  T. Yu,et al.  Sudden Death of Entanglement , 2009, Science.

[36]  Felipe F. Fanchini,et al.  Sudden change of quantum discord for a system of two qubits , 2013, 1309.7945.

[37]  J. Piilo,et al.  Sudden transition between classical and quantum decoherence. , 2010, Physical review letters.

[38]  Zheng-Fu Han,et al.  Performance of various correlation measures in quantum phase transitions using the quantum renormalization-group method , 2012 .

[39]  F. F. Fanchini,et al.  Non-Markovian dynamics of quantum discord , 2009, 0911.1096.

[40]  Matthias D. Lang,et al.  Quantum discord and the geometry of Bell-diagonal states. , 2010, Physical review letters.

[41]  S. Luo Quantum discord for two-qubit systems , 2008 .

[42]  Animesh Datta,et al.  Quantum discord and the power of one qubit. , 2007, Physical review letters.

[43]  Animesh Datta Quantum discord between relatively accelerated observers , 2009 .

[44]  F. M. Paula,et al.  Geometric quantum discord through the Schatten 1-norm , 2013, 1302.7034.

[45]  Heng Fan,et al.  Quantum correlating power of local quantum channels , 2012, 1203.6149.

[46]  Thiago O. Maciel,et al.  Witnessed entanglement and the geometric measure of quantum discord , 2012, 1207.1298.

[47]  Stefano Pirandola,et al.  Quantum discord as a resource for quantum cryptography , 2013, Scientific Reports.

[48]  F. F. Fanchini,et al.  Robustness of quantum discord to sudden death , 2009, 0905.3376.

[49]  Animesh Datta,et al.  Role of entanglement and correlations in mixed-state quantum computation , 2007 .

[50]  F. F. Fanchini,et al.  System-reservoir dynamics of quantum and classical correlations , 2009, 0910.5711.

[51]  A. Rau,et al.  Quantum discord for two-qubit X states , 2010, 1002.3429.

[52]  Gerardo Adesso,et al.  Universal freezing of quantum correlations within the geometric approach , 2014, Scientific Reports.

[53]  I. Chuang,et al.  Quantum Computation and Quantum Information: Introduction to the Tenth Anniversary Edition , 2010 .

[54]  M. Lewenstein,et al.  Quantum Entanglement , 2020, Quantum Mechanics.

[55]  S. Luo,et al.  Geometric measure of quantum discord , 2010 .

[56]  Marco Piani,et al.  Problem with geometric discord , 2012, 1206.0231.

[57]  Preeti Parashar,et al.  Comment on "Witnessed entanglement and the geometric measure of quantum discord" , 2013 .

[58]  N. J. Cerf,et al.  Multipartite nonlocality without entanglement in many dimensions , 2006 .

[59]  V. Giovannetti,et al.  Toward computability of trace distance discord , 2013, 1304.6879.

[60]  Jin-Liang Guo,et al.  Decoherent dynamics of quantum correlations in qubit–qutrit systems , 2013, Quantum Inf. Process..

[61]  C. Macchiavello,et al.  Entanglement-enhanced information transmission over a quantum channel with correlated noise , 2001, quant-ph/0107052.

[62]  Gerardo Adesso,et al.  Negativity of quantumness and its interpretations , 2012, 1211.4022.

[63]  Davide Girolami,et al.  Quantum resources for hybrid communication via qubit-oscillator states , 2012, 1205.0251.

[64]  A. Datta,et al.  Entanglement and the power of one qubit , 2005, quant-ph/0505213.

[65]  Sixia Yu,et al.  Quantum discord of two-qubit X states , 2011, 1102.0181.

[66]  M. Horodecki,et al.  Local versus nonlocal information in quantum-information theory: Formalism and phenomena , 2004, quant-ph/0410090.