Observing upper troposphere–lower stratosphere climate with radio occultation data from the CHAMP satellite

High quality observations of the atmosphere are particularly required for monitoring global climate change. Radio occultation (RO) data, using Global Navigation Satellite System (GNSS) signals, are well suited for this challenge. The special climate utility of RO data arises from their long-term stability due to their self-calibrated nature. The German research satellite CHAllenging Minisatellite Payload for geoscientific research (CHAMP) continuously records RO profiles since August 2001 providing the first opportunity to create RO based climatologies for a multi-year period of more than 5 years. A period of missing CHAMP data from July 3, 2006 to August 8, 2006 can be bridged with RO data from the GRACE satellite (Gravity Recovery and Climate Experiment). We have built seasonal and zonal mean climatologies of atmospheric (dry) temperature, microwave refractivity, geopotential height and pressure with 10° latitudinal resolution. We show representative results with focus on dry temperatures and compare them with analysis data from the European Centre for Medium-Range Weather Forecasts (ECMWF). Although we have available only about 150 CHAMP profiles per day (compared to millions of data entering the ECMWF analyses) the overall agreement between 8 and 30 km altitude is in general very good with systematic differences <0.5 K in most parts of the domain. Pronounced systematic differences (exceeding 2 K) in the tropical tropopause region and above Antarctica in southern winter can almost entirely be attributed to errors in the ECMWF analyses. Errors resulting from uneven sampling in space and time are a potential error source for single-satellite climatologies. The average CHAMP sampling error for seasonal zonal means is <0.2 K, higher values occur in restricted regions and time intervals which can be clearly identified by the sampling error estimation approach we introduced (which is based on ECMWF analysis fields). The total error of this new type of temperature climatologies is estimated to be <0.5 K below 30 km. The recently launched Taiwan/U.S. FORMOSAT-3/COSMIC constellation of 6 RO satellites started to provide thousands of RO profiles per day, but already now the single-satellite CHAMP RO climatologies improve upon modern operational climatologies in the upper troposphere–lower stratosphere and can act as absolute reference climatologies for validation of more bias-sensitive climate datasets and models.

[1]  Rolf König,et al.  CHAMP rapid orbit determination for GPS atmospheric limb sounding , 2002 .

[2]  J. Wickert,et al.  Evaluation of Stratospheric Radio Occultation Retrieval Using Data from CHAMP, MIPAS, GOMOS, and ECMWF Analysis Fields , 2005 .

[3]  Lennart Bengtsson,et al.  GNSS Occultation Sounding for Climate Monitoring , 2001 .

[4]  Gottfried Kirchengast,et al.  Sensitivity of GNSS radio occultation data to horizontal variability in the troposphere , 2002 .

[5]  John R. Christy,et al.  Uncertainty in Signals of Large-Scale Climate Variations in Radiosonde and Satellite Upper-Air Temperature Datasets , 2004 .

[6]  Refractivity Biases in GNSS Occultation Data , 2006 .

[7]  S. Sherwood,et al.  Radiosonde Daytime Biases and Late-20th Century Warming , 2005, Science.

[8]  Brian J. Hoskins,et al.  The tropical tropopause , 1998 .

[9]  Rolf König,et al.  The Radio Occultation Experiment aboard CHAMP: Operational Data Analysis and Validation of Vertical Atmospheric Profiles , 2004 .

[10]  H. H. Benzon,et al.  Full Spectrum Inversion of radio occultation signals , 2003 .

[11]  Jens Wickert,et al.  Climatological validation of stratospheric temperatures in ECMWF operational analyses with CHAMP radio occultation data , 2005 .

[12]  Gottfried Kirchengast,et al.  Error analysis for GNSS radio occultation data based on ensembles of profiles from end‐to‐end simulations , 2005 .

[13]  M. E. Gorbunov,et al.  Canonical transform method for processing radio occultation data in the lower troposphere , 2002 .

[14]  Christian Rocken,et al.  COSMIC System Description , 2000 .

[15]  Gottfried Kirchengast,et al.  Inversion, error analysis, and validation of GPS/MET occultation data , 1999 .

[16]  Global Climatologies Based on Radio Occultation Data: The CHAMPCLIM Project , 2006 .

[17]  A. Kliore,et al.  The neutral atmosphere of Venus as studied with the Mariner V radio occultation experiments , 1971 .

[18]  J. Christy,et al.  Reliability of Satellite Data Sets , 2003, Science.

[19]  Anthony J. Mannucci,et al.  CHAMP and SAC-C atmospheric occultation results and intercomparisons , 2004 .

[20]  J. Schofield,et al.  Observing Earth's atmosphere with radio occultation measurements using the Global Positioning System , 1997 .

[21]  J. Wickert,et al.  The CHAMPCLIM Project: An Overview , 2005 .

[22]  Gottfried Kirchengast,et al.  Advancements of Global Navigation Satellite System radio occultation retrieval in the upper stratosphere for optimal climate monitoring utility , 2004 .

[23]  A. Gobiet,et al.  ADVANCEMENTS OF GNSS OCCULTATION RETRIEVAL IN THE STRATOSPHERE FOR CLIMATE MONITORING , 2003 .

[24]  Vicky Chu,et al.  FORMOSAT-3/COSMIC science mission update , 2005 .

[25]  Markus J. Rieder,et al.  Error analysis and characterization of atmospheric profiles retrieved from GNSS occultation data , 2001 .

[26]  J. Wickert,et al.  GPS radio occultation with GRACE: Atmospheric profiling utilizing the zero difference technique , 2004, physics/0409032.

[27]  Christian Rocken,et al.  Applications of COSMIC to Meteorology and Climate , 2000 .

[28]  Gottfried Kirchengast,et al.  Local time influence in single‐satellite radio occultation climatologies from Sun‐synchronous and non‐Sun‐synchronous satellites , 2007 .

[29]  Daniel Bernard Kirk-Davidoff,et al.  Analysis of Sampling Errors for Climate Monitoring Satellites , 2005 .

[30]  Jean-Noël Thépaut,et al.  Assimilation experiments with CHAMP GPS radio occultation measurements , 2006 .

[31]  Grzegorz Michalak,et al.  GPS radio occultation with CHAMP and GRACE: A first look at a new and promising satellite configuration for global atmospheric sounding , 2005 .

[32]  S. B. Healy,et al.  Smoothing radio occultation bending angles above 40 km , 2001 .

[33]  S. Healy Radio occultation bending angle and impact parameter errors caused by horizontal refractive index gradients in the troposphere: A simulation study , 2001 .

[34]  Thomas P. Yunck,et al.  A History of GPS Sounding , 2000 .

[35]  Ralf Bennartz,et al.  Impact of gas absorption and surface albedo on cloud radiative smoothing , 2003 .

[36]  Mietek Jaroniec,et al.  Global Warming Trend of Mean Tropospheric Temperature Observed by Satellites , 2003 .

[37]  Rolf König,et al.  Atmosphere sounding by GPS radio occultation: First results from CHAMP , 2001 .

[38]  U. Foelsche,et al.  Atmosphere and climate : studies by occultation methods , 2006 .

[39]  Y. Menard,et al.  GRAS – Metop ’ s GPS-Based Atmospheric , 2000 .

[40]  J. Wickert,et al.  Pre-Operational Retrieval of Radio Occultation Based Climatologies , 2006 .

[41]  Lester L. Yuan,et al.  Sensing Climate Change Using the Global Positioning System , 1993 .

[42]  F. Wentz,et al.  The Effect of Diurnal Correction on Satellite-Derived Lower Tropospheric Temperature , 2005, Science.

[43]  J. Dykema,et al.  Climate Benchmarking Using GNSS Occultation , 2006 .

[44]  V. V. Vorob’ev,et al.  Estimation of the accuracy of the atmospheric refractive index recovery from Doppler shift measurements at frequencies used in the NAVSTAR system , 1994 .

[45]  S. Sokolovskiy Effect of superrefraction on inversions of radio occultation signals in the lower troposphere , 2003 .

[46]  Jens Wickert,et al.  GPS radio occultation with CHAMP and SAC-C: global monitoring of thermal tropopause parameters , 2005 .

[47]  U. Foelsche,et al.  Atmosphere and climate , 2006 .

[48]  J. Houghton,et al.  Climate change 2001 : the scientific basis , 2001 .

[49]  X. Zou,et al.  Analysis and validation of GPS/MET data in the neutral atmosphere , 1997 .

[50]  Shinfield Park,et al.  Assimilation of GPS radio occultation measurements at ECMWF , 2008 .

[51]  J. Wickert,et al.  GPS Radio Occultation with CHAMP , 2003 .

[52]  U. Foelsche,et al.  Tropical tropopause climatology as observed with radio occultation measurements from CHAMP compared to ECMWF and NCEP analyses , 2007 .

[53]  J. Wickert,et al.  Pre-Operational Retrieval of Radio Occultation Based , 2006 .

[54]  Ernest K. Smith,et al.  The constants in the equation for atmospheric refractive index at radio frequencies , 1953 .

[55]  Stephen S. Leroy,et al.  Measurement of geopotential heights by GPS radio occultation , 1997 .

[56]  F. Lalaurette Changes to the Operational Forecasting System , 2001 .

[57]  Gottfried Kirchengast,et al.  Global Climate Monitoring based on CHAMP/GPS Radio Occultation Data , 2003 .

[58]  Gottfried Kirchengast,et al.  Retrieval of temperature profiles from CHAMP for climate monitoring: intercomparison with Envisat MIPAS and GOMOS and different atmospheric analyses , 2007 .

[59]  M. Rothacher,et al.  A climatology of multiple tropopauses derived from GPS radio occultations with CHAMP and SAC‐C , 2006 .

[60]  C. Reigber Earth Observation with CHAMP : Results from Three Years in Orbit , 2005 .

[61]  A. Löscher,et al.  Error Characteristics of Refractivity Profiles Retrieved from CHAMP Radio Occultation Data , 2006 .

[62]  Martin Stendel,et al.  Validating the microwave sounding unit stratospheric record using GPS occultation , 2003 .