Preliminary Design of Low-Thrust Multiple Gravity-Assist Trajectories

The availability of electric engines as primary sources of propulsion has opened the doors to new scenarios for future interplanetary missions, but has increased the complexity of trajectory design. This paper proposes a novel approach to the preliminary design of interplanetary trajectories characterized by a combination of low-thrust propulsion and multiple gravity-assist maneuvers. Low-thrust arcs are obtained by shaping the trajectory through a set of parameterized pseudoequinoctial elements. The characterization of the solution space for a particular set of planetary encounters and a range of launch dates is then performed through a global optimization method, blending a particular evolutionary algorithm with a deterministic domain decomposition technique. The effectiveness of the proposed approach is demonstrated through a number of examples of the design of low-thrust, gravity-assist interplanetary trajectories.

[1]  A. L. Herman,et al.  Direct optimization using collocation based on high-order Gauss-Lobatto quadrature rules , 1996 .

[2]  J. Longuski,et al.  Design and Optimization of Low-Thrust Gravity-Assist Trajectories to Selected Planets , 2002 .

[3]  Lorenzo Casalino,et al.  Optimal Low-Thrust Escape Trajectories Using Gravity Assist , 1999 .

[4]  Massimiliano Vasile,et al.  Trajectory Design Combining Low-Thrust and Gravity Assist Manoeuvres , 2003 .

[5]  R. Battin An introduction to the mathematics and methods of astrodynamics , 1987 .

[6]  B. Conway,et al.  Optimization of low-thrust interplanetary trajectories using collocation and nonlinear programming , 1995 .

[7]  Massimiliano Vasile,et al.  On the optimality of a shape-based approach based on pseudo-equinoctial elements , 2006 .

[8]  John W. Hartmann,et al.  OPTIMAL INTERPLANETARY SPACECRAFT TRAJECTORIES VIA A PARETO GENETIC ALGORITHM , 1998 .

[9]  Massimiliano Vasile,et al.  A Tool for Preliminary Design of Low Thrust Gravity-Assist Trajectories , 2004 .

[10]  A. Miele,et al.  Multiple-Subarc Gradient-Restoration Algorithm, Part 1: Algorithm Structure , 2003 .

[11]  Anastassios E. Petropoulos,et al.  Shape-Based Algorithm for Automated Design of Low-Thrust, Gravity-Assist Trajectories , 2004 .

[12]  Carl G. Sauer Planetary Mission Performance for Small Solar Electric Propulsion Spacecraft , 1993 .

[13]  M. Martinez-Sanchez,et al.  Spacecraft Electric Propulsion—An Overview , 1998 .

[14]  Anastassios E. Petropoulos,et al.  Automated Design of Low-Thrust Gravity-Assist Trajectories , 2000 .

[15]  Robert H. Bishop,et al.  Transfer between circular and hyperbolic orbits using analytical maximum thrust arcs , 2003 .

[16]  David H. Lehman,et al.  Results from the Deep Space 1 technology validation mission , 2000 .

[17]  Yves Langevin,et al.  Chemical and solar electric propulsion options for a cornerstone mission to mercury , 2000 .

[18]  S. Oleson,et al.  Electric Propulsion for Project Prometheus , 2003 .

[19]  Massimiliano Vasile,et al.  Design of Earth–Mars transfer trajectories using evolutionary-branching technique☆ , 2003 .

[20]  Massimiliano Vasile,et al.  Electric Propulsion Options for a Probe to Europa , 2002 .

[21]  Massimiliano Vasile A global approach to optimal space trajectory design , 2003 .

[22]  Cesar A. Ocampo,et al.  Finite burn, roundtrip interplanetary trajectories with ISP constraints and mass discontinuities , 2005 .

[23]  Philip E. Gill,et al.  Practical optimization , 1981 .

[24]  Arthur E. Bryson,et al.  Applied Optimal Control , 1969 .

[25]  James M. Longuski,et al.  Preliminary Design of Nuclear Electric Propulsion Missions to the Outer Planets , 2004 .

[26]  C. A. Kluever,et al.  OPTIMAL LOW-THRUST ILNTERPLANETARY TRAJECTORIES BY DIRECT METHOD TECHNIQUES , 1997 .

[27]  J. Betts Survey of Numerical Methods for Trajectory Optimization , 1998 .

[28]  M. Vasile,et al.  Design of Interplanetary and Lunar Missions Combining Low Thrust and Gravity Assists , 2002 .

[29]  Zbigniew Michalewicz,et al.  Handbook of Evolutionary Computation , 1997 .

[30]  Craig A. Kluever,et al.  Mercury Mission Design Using Solar Electric Propulsion Spacecraft , 1998 .

[31]  John T. Betts,et al.  Optimal lunar swingby trajectories , 2007 .

[32]  Victoria Coverstone-Carroll,et al.  Benefits of solar electric propulsion for the next generation of planetary exploration missions , 1997 .

[33]  Anil V. Rao,et al.  Practical Methods for Optimal Control Using Nonlinear Programming , 1987 .