Microstructural biases in empirical tests of option pricing models

This paper examines how noise in observed option prices arising from discrete prices and other microstructural frictions affects empirical tests of option pricing models and risk-neutral density estimation. The discrete tick size alone introduces enough noise to make model comparisons difficult, especially for lower-priced stocks. We demonstrate that microstructural noise can lead to incorrect inferences in the univariate diffusion test of Bakshi et al. (Rev Financ Stud 13:549–584, 2000), the transition density diffusion test of Ait-Sahalia (J Financ 57:2075–2112, 2002), and the speed-of-convergence test of Carr and Wu (J Financ 58:2581–2610, 2003). We also show that microstructural noise induces a bias into the implied risk-neutral moment estimators of Bakshi et al. (Rev Financ Stud 16:101–143, 2003). Even in active, liquid option markets, observation error is likely to reduce significantly the power of tests, and in some cases represents an important source of bias.

[1]  N. Prabhala,et al.  The relation between implied and realized volatility , 1998 .

[2]  David S. Bates Post-'87 crash fears in the S&P 500 futures option market , 2000 .

[3]  M. Subrahmanyam,et al.  When are Options Overpriced? The Black-Scholes Model and Alternative Characterizations of the Pricing Kernel , 1999 .

[4]  Stephen Figlewski,et al.  The Informational Content of Implied Volatility , 1993 .

[5]  Clifford W. Smith,et al.  Trading costs for listed options: The implications for market efficiency , 1980 .

[6]  D. Duffie,et al.  Transform Analysis and Asset Pricing for Affine Jump-Diffusions , 1999 .

[7]  David S. Bates Jumps and Stochastic Volatility: Exchange Rate Processes Implicit in Thephlx Deutschemark Options , 1993 .

[8]  Philippe Jorion Predicting Volatility in the Foreign Exchange Market , 1995 .

[9]  Stephen Gray,et al.  Regime switching in foreign exchange rates : Evidence from currency option prices , 2000 .

[10]  P. Carr,et al.  Time-Changed Levy Process and Option Pricing , 2001 .

[11]  António Câmara,et al.  A Generalization of the Brennan-Rubinstein Approach for the Pricing of Derivatives , 2003 .

[12]  Stephen Figlewski Options Arbitrage in Imperfect Markets , 1989 .

[13]  Michael J. Dueker,et al.  Directly Measuring Early Exercise Premiums Using American and European S&P 500 Index Options , 2002 .

[14]  L. Ederington,et al.  Forecasting Volatility , 2004 .

[15]  Douglas T. Breeden,et al.  Prices of State-Contingent Claims Implicit in Option Prices , 1978 .

[16]  M. Rubinstein. Nonparametric tests of alternative option pricing models using all reported trades and quotes on the , 1985 .

[17]  Kalok Chan,et al.  Asymmetric Price Distribution and Bid–Ask Quotes in the Stock Options Market* , 2012 .

[18]  Larry J. Merville,et al.  An Empirical Examination of the Black‐Scholes Call Option Pricing Model , 1979 .

[19]  Mihir Bhattacharya Empirical Properties of the Black-Scholes Formula Under Ideal Conditions , 1980, Journal of Financial and Quantitative Analysis.

[20]  S. Prowse,et al.  The Private Equity Market: An Overveiw , 1997 .

[21]  S. Ross,et al.  The valuation of options for alternative stochastic processes , 1976 .

[22]  Peter H. Ritchken,et al.  Option pricing under regime switching , 2002 .

[23]  P. Carr,et al.  What Type of Process Underlies Options? A Simple Robust Test , 2003 .

[24]  David S. Bates Empirical option pricing: a retrospection , 2003 .

[25]  S. Heston,et al.  A Closed-Form GARCH Option Valuation Model , 2000 .

[26]  F. Black,et al.  The Valuation of Option Contracts and a Test of Market Efficiency , 1972 .

[27]  Patrick J. Dennis,et al.  Risk-Neutral Skewness: Evidence from Stock Options , 2002 .

[28]  Stewart Mayhew,et al.  Competition, Market Structure, and Bid‐Ask Spreads in Stock Option Markets , 2002 .

[29]  Ludger Hentschel,et al.  Errors in Implied Volatility Estimation , 2003, Journal of Financial and Quantitative Analysis.

[30]  Gurdip Bakshi,et al.  Do Call Prices and the Underlying Stock Always Move in the Same Direction , 1999 .

[31]  J. Cochrane,et al.  Beyond Arbitrage: Good‐Deal Asset Price Bounds in Incomplete Markets , 2000, Journal of Political Economy.

[32]  Gurdip Bakshi,et al.  Empirical Performance of Alternative Option Pricing Models , 1997 .

[33]  Robert A. Jarrow,et al.  Pricing foreign currency options under stochastic interest rates , 1991 .

[34]  R. C. Merton,et al.  Option pricing when underlying stock returns are discontinuous , 1976 .

[35]  F. Black,et al.  The Pricing of Options and Corporate Liabilities , 1973, Journal of Political Economy.

[36]  Jens Carsten Jackwerth,et al.  Option Implied Risk-Neutral Distributions and Implied Binomial Trees: A Literature Review , 1999 .

[37]  Allen M. Poteshman Forecasting Future Volatility from Option Prices , 2000 .

[38]  Telling from Discrete Data Whether the Underlying Continuous-Time Model is a Diffusion , 2002 .

[39]  E. Stein,et al.  Stock Price Distributions with Stochastic Volatility: An Analytic Approach , 1991 .

[40]  R. C. Merton,et al.  Theory of Rational Option Pricing , 2015, World Scientific Reference on Contingent Claims Analysis in Corporate Finance.

[41]  J. Duan THE GARCH OPTION PRICING MODEL , 1995 .

[42]  F. Longstaff Option Pricing and the Martingale Restriction , 1995 .

[43]  Nikolaos Panigirtzoglou,et al.  Testing the Stability of Implied Probability Density Functions , 2002 .

[44]  D. Madan,et al.  Stock Return Characteristics, Skew Laws, and the Differential Pricing of Individual Equity Options , 2000 .

[45]  M. Rubinstein. Implied Binomial Trees , 1994 .

[46]  A. Penttinen The Sensitivity of Implied Volatility to Expectations of Jumps in Volatility: An Explanation to the Illusory Bias in Implied Volatility as a Forecast , 2001 .

[47]  J. Cochrane,et al.  Beyond Arbitrage: 'Good Deal' Asset Price Bounds in Incomplete Markets , 1996 .

[48]  S. Heston A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options , 1993 .