Generalized projective synchronization of fractional order chaotic systems

[1]  M. Caputo Linear Models of Dissipation whose Q is almost Frequency Independent-II , 1967 .

[2]  A. Isidori Nonlinear Control Systems , 1985 .

[3]  O. Marichev,et al.  Fractional Integrals and Derivatives: Theory and Applications , 1993 .

[4]  K. Miller,et al.  An Introduction to the Fractional Calculus and Fractional Differential Equations , 1993 .

[5]  Chi-Tsong Chen,et al.  Linear System Theory and Design , 1995 .

[6]  C. F. Lorenzo,et al.  Chaos in a fractional order Chua's system , 1995 .

[7]  L. Tsimring,et al.  Generalized synchronization of chaos in directionally coupled chaotic systems. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[8]  Bernard Friedland,et al.  Advanced Control System Design , 1996 .

[9]  H. Abarbanel,et al.  Generalized synchronization of chaos: The auxiliary system approach. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[10]  Parlitz,et al.  Synchronizing Spatiotemporal Chaos in Coupled Nonlinear Oscillators. , 1996, Physical review letters.

[11]  I. Podlubny Fractional differential equations , 1998 .

[12]  P. Arena,et al.  Bifurcation and Chaos in Noninteger Order Cellular Neural Networks , 1998 .

[13]  P. Arena,et al.  Chaotic behavior in noninteger-order cellular neural networks , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[14]  P. Butzer,et al.  AN INTRODUCTION TO FRACTIONAL CALCULUS , 2000 .

[15]  R. Hilfer Applications Of Fractional Calculus In Physics , 2000 .

[16]  S. Bishop,et al.  Manipulating the scaling factor of projective synchronization in three-dimensional chaotic systems. , 2001, Chaos.

[17]  Daolin Xu,et al.  Stability criterion for projective synchronization in three-dimensional chaotic systems , 2001 .

[18]  Daizhan Cheng,et al.  Bridge the Gap between the Lorenz System and the Chen System , 2002, Int. J. Bifurc. Chaos.

[19]  N. Ford,et al.  A Predictor-Corrector Approach for the Numerical Solution of Fractional Differential Equations , 2013 .

[20]  S. Boccaletti,et al.  Synchronization of chaotic systems , 2001 .

[21]  Daolin Xu,et al.  Controlling the ultimate state of projective synchronization in chaotic systems of arbitrary dimension. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[22]  N. Ford,et al.  Analysis of Fractional Differential Equations , 2002 .

[23]  Julien Clinton Sprott,et al.  Chaos in fractional-order autonomous nonlinear systems , 2003 .

[24]  Elena Grigorenko,et al.  Chaotic dynamics of the fractional Lorenz system. , 2003, Physical review letters.

[25]  C. Chee,et al.  A necessary condition of projective synchronization in discrete-time systems of arbitrary dimensions , 2004 .

[26]  Chunguang Li,et al.  Chaos and hyperchaos in the fractional-order Rössler equations , 2004 .

[27]  Alan D. Freed,et al.  Detailed Error Analysis for a Fractional Adams Method , 2004, Numerical Algorithms.

[28]  Changpin Li,et al.  Synchronization in fractional-order differential systems , 2005 .

[29]  Juebang Yu,et al.  Synchronization of fractional-order chaotic systems , 2005, Proceedings. 2005 International Conference on Communications, Circuits and Systems, 2005..

[30]  Jianping Yan,et al.  Generalized projective synchronization of a unified chaotic system , 2005 .

[31]  Jun-Guo Lu,et al.  Synchronization of a class of fractional-order chaotic systems via a scalar transmitted signal , 2006 .

[32]  Guojun Peng,et al.  Synchronization of fractional order chaotic systems , 2007 .