Sensitivity and specificity of machine learning classifiers for glaucoma diagnosis using Spectral Domain OCT and standard automated perimetry.

PURPOSE To evaluate the sensitivity and specificity of machine learning classifiers (MLCs) for glaucoma diagnosis using Spectral Domain OCT (SD-OCT) and standard automated perimetry (SAP). METHODS Observational cross-sectional study. Sixty two glaucoma patients and 48 healthy individuals were included. All patients underwent a complete ophthalmologic examination, achromatic standard automated perimetry (SAP) and retinal nerve fiber layer (RNFL) imaging with SD-OCT (Cirrus HD-OCT; Carl Zeiss Meditec Inc., Dublin, California). Receiver operating characteristic (ROC) curves were obtained for all SD-OCT parameters and global indices of SAP. Subsequently, the following MLCs were tested using parameters from the SD-OCT and SAP: Bagging (BAG), Naive-Bayes (NB), Multilayer Perceptron (MLP), Radial Basis Function (RBF), Random Forest (RAN), Ensemble Selection (ENS), Classification Tree (CTREE), Ada Boost M1(ADA),Support Vector Machine Linear (SVML) and Support Vector Machine Gaussian (SVMG). Areas under the receiver operating characteristic curves (aROC) obtained for isolated SAP and OCT parameters were compared with MLCs using OCT+SAP data. RESULTS Combining OCT and SAP data, MLCs' aROCs varied from 0.777(CTREE) to 0.946 (RAN).The best OCT+SAP aROC obtained with RAN (0.946) was significantly larger the best single OCT parameter (p<0.05), but was not significantly different from the aROC obtained with the best single SAP parameter (p=0.19). CONCLUSION Machine learning classifiers trained on OCT and SAP data can successfully discriminate between healthy and glaucomatous eyes. The combination of OCT and SAP measurements improved the diagnostic accuracy compared with OCT data alone.

[1]  Ki Ho Park,et al.  Comparison of Cirrus OCT and Stratus OCT on the ability to detect localized retinal nerve fiber layer defects in preperimetric glaucoma. , 2010, Investigative ophthalmology & visual science.

[2]  Robert N Weinreb,et al.  Combining Functional and Structural Tests Improves the Diagnostic Accuracy of Relevance Vector Machine Classifiers , 2010, Journal of glaucoma.

[3]  William J Feuer,et al.  Sensitivity and specificity of time-domain versus spectral-domain optical coherence tomography in diagnosing early to moderate glaucoma. , 2009, Ophthalmology.

[4]  A. S. Vilupuru,et al.  The relationship between nerve fiber layer and perimetry measurements. , 2007, Investigative ophthalmology & visual science.

[5]  Anthony J Correnti,et al.  Optical coherence tomography measurement of macular and nerve fiber layer thickness in normal and glaucomatous human eyes. , 2003, Ophthalmology.

[6]  P. Bossuyt,et al.  Sources of Variation and Bias in Studies of Diagnostic Accuracy , 2004, Annals of Internal Medicine.

[7]  Mei-Ling Huang,et al.  Development and comparison of automated classifiers for glaucoma diagnosis using Stratus optical coherence tomography. , 2005, Investigative ophthalmology & visual science.

[8]  B Lausen,et al.  Comparison of classifiers applied to confocal scanning laser ophthalmoscopy data. , 2008, Methods of information in medicine.

[9]  T. Sejnowski,et al.  Heidelberg retina tomograph measurements of the optic disc and parapapillary retina for detecting glaucoma analyzed by machine learning classifiers. , 2004, Investigative ophthalmology & visual science.

[10]  Robert N Weinreb,et al.  Combining structural and functional testing for detection of glaucoma. , 2006, Ophthalmology.

[11]  E A Swanson,et al.  Quantification of nerve fiber layer thickness in normal and glaucomatous eyes using optical coherence tomography. , 1995, Archives of ophthalmology.

[12]  Te-Won Lee,et al.  Bayesian machine learning classifiers for combining structural and functional measurements to classify healthy and glaucomatous eyes. , 2008, Investigative ophthalmology & visual science.

[13]  V. P. Costa,et al.  Discrimination between normal and glaucomatous eyes with visual field and scanning laser polarimetry measurements , 2001, The British journal of ophthalmology.

[14]  E. E. Hartmann,et al.  The Ocular Hypertension Treatment Study: a randomized trial determines that topical ocular hypotensive medication delays or prevents the onset of primary open-angle glaucoma. , 2002, Archives of ophthalmology.

[15]  L. Zangwill,et al.  Discriminating between normal and glaucomatous eyes using the Heidelberg Retina Tomograph, GDx Nerve Fiber Analyzer, and Optical Coherence Tomograph. , 2001, Archives of ophthalmology.

[16]  Valter Torri,et al.  Results of the European Glaucoma Prevention Study. , 2005, Ophthalmology.

[17]  A. Sommer,et al.  The nerve fiber layer in the diagnosis of glaucoma. , 1977, Archives of ophthalmology.

[18]  Anders Heijl,et al.  Machine learning classifiers for glaucoma diagnosis based on classification of retinal nerve fibre layer thickness parameters measured by Stratus OCT , 2010, Acta ophthalmologica.

[19]  T. Sejnowski,et al.  Relevance vector machine and support vector machine classifier analysis of scanning laser polarimetry retinal nerve fiber layer measurements. , 2005, Investigative ophthalmology & visual science.

[20]  William J Feuer,et al.  Comparison of retinal nerve fiber layer measurements using time domain and spectral domain optical coherent tomography. , 2009, Ophthalmology.

[21]  J. Zarranz-Ventura,et al.  Cirrus high-definition optical coherence tomography compared with Stratus optical coherence tomography in glaucoma diagnosis. , 2010, Investigative ophthalmology & visual science.

[22]  Anders Heijl,et al.  Trained Artificial Neural Network for Glaucoma Diagnosis Using Visual Field Data: A Comparison With Conventional Algorithms , 2007, Journal of glaucoma.

[23]  Marcelo Dias,et al.  Sensitivity and Specificity of Machine Learning Classifiers and Spectral Domain OCT for the Diagnosis of Glaucoma , 2012, European journal of ophthalmology.

[24]  Robert N Weinreb,et al.  Assessing visual field clustering schemes using machine learning classifiers in standard perimetry. , 2007, Investigative ophthalmology & visual science.

[25]  Kyung Rim Sung,et al.  Comparison of glaucoma diagnostic Capabilities of Cirrus HD and Stratus optical coherence tomography. , 2009, Archives of ophthalmology.

[26]  C. Glymour,et al.  Optical coherence tomography machine learning classifiers for glaucoma detection: a preliminary study. , 2005, Investigative ophthalmology & visual science.

[27]  K. A. Townsend,et al.  Heidelberg Retina Tomograph 3 machine learning classifiers for glaucoma detection , 2008, British Journal of Ophthalmology.

[28]  Berthold Lausen,et al.  Improving Glaucoma Diagnosis by the Combination of Perimetry and HRT Measurements , 2006, Journal of glaucoma.

[29]  J. Schuman,et al.  Optical coherence tomography. , 2000, Science.