Sensitivity and specificity of machine learning classifiers for glaucoma diagnosis using Spectral Domain OCT and standard automated perimetry.
暂无分享,去创建一个
Marcelo Dias | Vanessa G Vidotti | Vital P Costa | Fabrício R Silva | Fernanda Cremasco | Edson S Gomi | V. P. Costa | F. R. Silva | V. Vidotti | F. Cremasco | Marcelo Dias | E. Gomi
[1] Ki Ho Park,et al. Comparison of Cirrus OCT and Stratus OCT on the ability to detect localized retinal nerve fiber layer defects in preperimetric glaucoma. , 2010, Investigative ophthalmology & visual science.
[2] Robert N Weinreb,et al. Combining Functional and Structural Tests Improves the Diagnostic Accuracy of Relevance Vector Machine Classifiers , 2010, Journal of glaucoma.
[3] William J Feuer,et al. Sensitivity and specificity of time-domain versus spectral-domain optical coherence tomography in diagnosing early to moderate glaucoma. , 2009, Ophthalmology.
[4] A. S. Vilupuru,et al. The relationship between nerve fiber layer and perimetry measurements. , 2007, Investigative ophthalmology & visual science.
[5] Anthony J Correnti,et al. Optical coherence tomography measurement of macular and nerve fiber layer thickness in normal and glaucomatous human eyes. , 2003, Ophthalmology.
[6] P. Bossuyt,et al. Sources of Variation and Bias in Studies of Diagnostic Accuracy , 2004, Annals of Internal Medicine.
[7] Mei-Ling Huang,et al. Development and comparison of automated classifiers for glaucoma diagnosis using Stratus optical coherence tomography. , 2005, Investigative ophthalmology & visual science.
[8] B Lausen,et al. Comparison of classifiers applied to confocal scanning laser ophthalmoscopy data. , 2008, Methods of information in medicine.
[9] T. Sejnowski,et al. Heidelberg retina tomograph measurements of the optic disc and parapapillary retina for detecting glaucoma analyzed by machine learning classifiers. , 2004, Investigative ophthalmology & visual science.
[10] Robert N Weinreb,et al. Combining structural and functional testing for detection of glaucoma. , 2006, Ophthalmology.
[11] E A Swanson,et al. Quantification of nerve fiber layer thickness in normal and glaucomatous eyes using optical coherence tomography. , 1995, Archives of ophthalmology.
[12] Te-Won Lee,et al. Bayesian machine learning classifiers for combining structural and functional measurements to classify healthy and glaucomatous eyes. , 2008, Investigative ophthalmology & visual science.
[13] V. P. Costa,et al. Discrimination between normal and glaucomatous eyes with visual field and scanning laser polarimetry measurements , 2001, The British journal of ophthalmology.
[14] E. E. Hartmann,et al. The Ocular Hypertension Treatment Study: a randomized trial determines that topical ocular hypotensive medication delays or prevents the onset of primary open-angle glaucoma. , 2002, Archives of ophthalmology.
[15] L. Zangwill,et al. Discriminating between normal and glaucomatous eyes using the Heidelberg Retina Tomograph, GDx Nerve Fiber Analyzer, and Optical Coherence Tomograph. , 2001, Archives of ophthalmology.
[16] Valter Torri,et al. Results of the European Glaucoma Prevention Study. , 2005, Ophthalmology.
[17] A. Sommer,et al. The nerve fiber layer in the diagnosis of glaucoma. , 1977, Archives of ophthalmology.
[18] Anders Heijl,et al. Machine learning classifiers for glaucoma diagnosis based on classification of retinal nerve fibre layer thickness parameters measured by Stratus OCT , 2010, Acta ophthalmologica.
[19] T. Sejnowski,et al. Relevance vector machine and support vector machine classifier analysis of scanning laser polarimetry retinal nerve fiber layer measurements. , 2005, Investigative ophthalmology & visual science.
[20] William J Feuer,et al. Comparison of retinal nerve fiber layer measurements using time domain and spectral domain optical coherent tomography. , 2009, Ophthalmology.
[21] J. Zarranz-Ventura,et al. Cirrus high-definition optical coherence tomography compared with Stratus optical coherence tomography in glaucoma diagnosis. , 2010, Investigative ophthalmology & visual science.
[22] Anders Heijl,et al. Trained Artificial Neural Network for Glaucoma Diagnosis Using Visual Field Data: A Comparison With Conventional Algorithms , 2007, Journal of glaucoma.
[23] Marcelo Dias,et al. Sensitivity and Specificity of Machine Learning Classifiers and Spectral Domain OCT for the Diagnosis of Glaucoma , 2012, European journal of ophthalmology.
[24] Robert N Weinreb,et al. Assessing visual field clustering schemes using machine learning classifiers in standard perimetry. , 2007, Investigative ophthalmology & visual science.
[25] Kyung Rim Sung,et al. Comparison of glaucoma diagnostic Capabilities of Cirrus HD and Stratus optical coherence tomography. , 2009, Archives of ophthalmology.
[26] C. Glymour,et al. Optical coherence tomography machine learning classifiers for glaucoma detection: a preliminary study. , 2005, Investigative ophthalmology & visual science.
[27] K. A. Townsend,et al. Heidelberg Retina Tomograph 3 machine learning classifiers for glaucoma detection , 2008, British Journal of Ophthalmology.
[28] Berthold Lausen,et al. Improving Glaucoma Diagnosis by the Combination of Perimetry and HRT Measurements , 2006, Journal of glaucoma.
[29] J. Schuman,et al. Optical coherence tomography. , 2000, Science.