Towards Probabilistic Bitemporal Knowledge Graphs

The emergence of open information extraction as a tool for constructing and expanding knowledge graphs has aided the growth of temporal data, for instance, YAGO, NELL and Wikidata. While YAGO and Wikidata maintain the valid time of facts, NELL records the time point at which a fact is retrieved from some Web corpora. Collectively, these knowledge graphs (KGs) store facts extracted from Wikipedia and other sources. Due to the imprecise nature of the extraction tools that are used to build and expand KGs, such as NELL, the facts in the KGs are weighted (a confidence value representing the correctness of a fact). Additionally, NELL can be considered as a transaction time KG because every fact is associated with extraction date. On the other hand, YAGO and Wikidata use the valid time model because they only maintain facts together with their validity time (temporal scope). In this paper, we propose a bitemporal model (that combines transaction and valid time models) for maintaining and querying probabilistic temporal knowledge graphs. We report our evaluation results of the proposed approach.

[1]  Luc De Raedt,et al.  On the implementation of the probabilistic logic programming language ProbLog , 2010, Theory and Practice of Logic Programming.

[2]  Jens Lehmann,et al.  DBpedia: A Nucleus for a Web of Open Data , 2007, ISWC/ASWC.

[3]  Martin Theobald,et al.  Resolving Temporal Conflicts in Inconsistent RDF Knowledge Bases , 2011, BTW.

[4]  Oren Etzioni,et al.  Learning First-Order Horn Clauses from Web Text , 2010, EMNLP.

[5]  Daisy Zhe Wang,et al.  ScaLeKB: scalable learning and inference over large knowledge bases , 2016, The VLDB Journal.

[6]  Gerhard Weikum,et al.  YAGO2: exploring and querying world knowledge in time, space, context, and many languages , 2011, WWW.

[7]  Melisachew Wudage Chekol Scaling Probabilistic Temporal Query Evaluation , 2017, CIKM.

[8]  Markus Krötzsch,et al.  Wikidata , 2014, Commun. ACM.

[9]  Jens Lehmann,et al.  Hybrid Acquisition of Temporal Scopes for RDF Data , 2014, ESWC.

[10]  Christos Faloutsos,et al.  Designing Access Methods for Bitemporal Databases , 1998, IEEE Trans. Knowl. Data Eng..

[11]  Michael Böhlen,et al.  TemProRA: Top-k temporal-probabilistic results analysis , 2016, 2016 IEEE 32nd International Conference on Data Engineering (ICDE).

[12]  Heiner Stuckenschmidt,et al.  Marrying Uncertainty and Time in Knowledge Graphs , 2017, AAAI.

[13]  Robert B. Ross,et al.  Probabilistic temporal databases, I: algebra , 2001, TODS.

[14]  Tom M. Mitchell,et al.  Coupled temporal scoping of relational facts , 2012, WSDM '12.

[15]  Michael H. Böhlen,et al.  Temporal alignment , 2012, SIGMOD Conference.

[16]  Alma Mater Studiorum Multi-temporal RDF Ontology Versioning , 2009 .

[17]  Wei Zhang,et al.  Knowledge vault: a web-scale approach to probabilistic knowledge fusion , 2014, KDD.

[18]  Claudio Gutiérrez,et al.  Temporal RDF , 2005, ESWC.

[19]  Daniel S. Weld,et al.  Temporal Information Extraction , 2010, AAAI.

[20]  Richard T. Snodgrass,et al.  Coalescing in Temporal Databases , 1996, VLDB.

[21]  Andrew U. Frank,et al.  Theories and Methods of Spatio-Temporal Reasoning in Geographic Space , 1992, Lecture Notes in Computer Science.

[22]  Luc De Raedt,et al.  Inducing Probabilistic Relational Rules from Probabilistic Examples , 2015, IJCAI.

[23]  Martin Theobald,et al.  A Temporal-Probabilistic Database Model for Information Extraction , 2013, Proc. VLDB Endow..

[24]  Estevam R. Hruschka,et al.  Toward an Architecture for Never-Ending Language Learning , 2010, AAAI.