Landau level spectroscopy of electron-electron interactions in graphene.

We present magneto-Raman scattering studies of electronic inter-Landau level excitations in quasineutral graphene samples with different strengths of Coulomb interaction. The band velocity associated with these excitations is found to depend on the dielectric environment, on the index of Landau level involved, and to vary as a function of the magnetic field. This contradicts the single-particle picture of noninteracting massless Dirac electrons but is accounted for by theory when the effect of electron-electron interaction is taken into account. Raman active, zero-momentum inter-Landau level excitations in graphene are sensitive to electron-electron interactions due to the nonapplicability of the Kohn theorem in this system, with a clearly nonparabolic dispersion relation.

[1]  A. Nicolet,et al.  A micro-magneto-Raman scattering study of graphene on a bulk graphite substrate , 2014, 1408.1689.

[2]  Yuanbo Zhang,et al.  Colloquium: Graphene spectroscopy , 2014, 1407.6721.

[3]  S. Berciaud,et al.  Probing electronic excitations in mono- to pentalayer graphene by micro magneto-Raman spectroscopy. , 2014, Nano letters.

[4]  Zhiwen Shi,et al.  Observation of an intrinsic bandgap and Landau level renormalization in graphene/boron-nitride heterostructures , 2014, Nature Communications.

[5]  S. Das Sarma,et al.  Why does graphene behave as a weakly interacting system? , 2014, Physical review letters.

[6]  D. Basko,et al.  Raman spectroscopy as a versatile tool for studying the properties of graphene. , 2013, Nature nanotechnology.

[7]  A. Nicolet,et al.  Polarization-resolved magneto-Raman scattering of graphenelike domains on natural graphite , 2012, 1203.1847.

[8]  Influence of Landau level mixing on the properties of elementary excitations in graphene in strong magnetic field , 2011, Nanoscale Research Letters.

[9]  F. Guinea,et al.  Electron-Electron Interactions in Graphene: Current Status and Perspectives , 2010, 1012.3484.

[10]  F. Guinea,et al.  Dirac cones reshaped by interaction effects in suspended graphene (vol 7, pg 701, 2011) , 2011, 1104.1396.

[11]  A. Nicolet,et al.  Magneto-Raman scattering of graphene on graphite: electronic and phonon excitations. , 2011, Physical review letters.

[12]  J. Robertson,et al.  Density functional theory screened-exchange approach for investigating electronical properties of graphene-related materials , 2010, 1006.3443.

[13]  K. Shepard,et al.  Boron nitride substrates for high-quality graphene electronics. , 2010, Nature nanotechnology.

[14]  M. Potemski,et al.  Dirac electronic states in graphene systems: optical spectroscopy studies , 2010, 1004.2949.

[15]  K. Shizuya Many-body corrections to cyclotron resonance in monolayer and bilayer graphene , 2009, 0911.1543.

[16]  V. Fal’ko,et al.  Signature of electronic excitations in the Raman spectrum of graphene , 2009, 0906.5251.

[17]  S. Banerjee,et al.  Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils , 2009, Science.

[18]  M. Dresselhaus,et al.  Raman spectroscopy in graphene , 2009 .

[19]  A. Barra,et al.  How perfect can graphene be? , 2009, Physical review letters.

[20]  Kwang S. Kim,et al.  Large-scale pattern growth of graphene films for stretchable transparent electrodes , 2009, Nature.

[21]  T. Heinz,et al.  Probing the intrinsic properties of exfoliated graphene: Raman spectroscopy of free-standing monolayers. , 2009, Nano letters.

[22]  C. Berger,et al.  Approaching the dirac point in high-mobility multilayer epitaxial graphene. , 2008, Physical review letters.

[23]  G. Fudenberg,et al.  Ultrahigh electron mobility in suspended graphene , 2008, 0802.2389.

[24]  T. Michely,et al.  Structural coherency of graphene on Ir(111). , 2008, Nano letters.

[25]  G. Martínez,et al.  Magnetoplasmon excitations in graphene for filling factors ν ⩽ 6 , 2007, 0710.2420.

[26]  P. Kim,et al.  Infrared spectroscopy of Landau levels of graphene. , 2007, Physical review letters.

[27]  L. Brey,et al.  Excitations from filled Landau levels in graphene , 2006, cond-mat/0608364.

[28]  Andre K. Geim,et al.  Raman spectrum of graphene and graphene layers. , 2006, Physical review letters.

[29]  C. Berger,et al.  Landau level spectroscopy of ultrathin graphite layers. , 2006, Physical review letters.

[30]  F. Guinea,et al.  Marginal-Fermi-liquid behavior from two-dimensional Coulomb interaction , 1998, cond-mat/9807130.

[31]  S. Sarma,et al.  Perspectives in Quantum Hall Effects , 1996 .

[32]  F. Guinea,et al.  ELECTROSTATIC SCREENING IN FULLERENE MOLECULES , 1993, cond-mat/9303007.

[33]  B. Halperin,et al.  Excitations from a filled Landau level in the two-dimensional electron gas , 1984 .

[34]  G. M. Éliashberg,et al.  Two-Dimensional Electrons in a Strong Magnetic Field - JETP Lett. 33, 143 (1981) , 1981 .

[35]  Walter Kohn,et al.  Cyclotron Resonance and de Haas-van Alphen Oscillations of an Interacting Electron Gas , 1961 .