Dielectric measurement of cell death

Dielectric techniques, which include dielectric spectroscopy as well as AC electrokinetic methods such as dielectrophoresis, electrorotation and electro-orientation, can be provide important information about cell viability. A review is given of the different dielectric techniques that have been used for measuring cell viability and their utility. The changes that occur in the cell dielectric properties during apoptotic and different forms of traumatic cell death are discussed and interpreted in terms of the main parameters involved (membrane capacitance and conductance and internal conductivity).

[1]  J. Gimsa,et al.  A comprehensive approach to electro-orientation, electrodeformation, dielectrophoresis, and electrorotation of ellipsoidal particles and biological cells. , 2001, Bioelectrochemistry.

[2]  Ivanov AIu,et al.  Electrophysical analysis of Escherichia coli cell damage caused by silver ions , 1992 .

[3]  Bernard Lachance,et al.  Assessment of cytotoxicity using electric cell-substrate impedance sensing: concentration and time response function approach. , 2002, Analytical chemistry.

[4]  D. Kell,et al.  Evidence from its temperature dependence that the β-dielectric dispersion of cell suspensions is not due solely to the charging of a static membrane capacitance , 1990, European Biophysics Journal.

[5]  P. Renaud,et al.  Focusing and Continuous Separation of Cells in a Microfluidic Device using Lateral Dielectrophoresis , 2007, TRANSDUCERS 2007 - 2007 International Solid-State Sensors, Actuators and Microsystems Conference.

[6]  Michael P Hughes,et al.  Dielectrophoresis-activated multiwell plate for label-free high-throughput drug assessment. , 2008, Analytical chemistry.

[7]  Detecting membrane impairment caused by xenobiotics , 1993 .

[8]  R. Pethig,et al.  Dielectrophoretic separation of cells: Continuous separation , 1995, Biotechnology and bioengineering.

[9]  U von Stockar,et al.  On-line determination of animal cell concentration in two industrial high-density culture processes by dielectric spectroscopy. , 2002, Biotechnology and bioengineering.

[10]  R. Pethig Dielectrophoresis: Using Inhomogeneous AC Electrical Fields to Separate and Manipulate Cells , 1996 .

[11]  D. Querido Temperature-correction of abdominal impedance: improved relationship between impedance and postmortem interval. , 2000, Forensic science international.

[12]  K. Asami Effects of membrane disruption on dielectric properties of biological cells , 2006 .

[13]  D. Kell,et al.  Viability and activity in readily culturable bacteria: a review and discussion of the practical issues , 1998, Antonie van Leeuwenhoek.

[14]  R Pethig,et al.  Automatic cell electrorotation measurements: studies of the biological effects of low-frequency magnetic fields and of heat shock. , 1998, Physics in medicine and biology.

[15]  Elisabeth Smela,et al.  Multiple frequency dielectrophoresis , 2007, Electrophoresis.

[16]  R. Pethig,et al.  Dielectrophoretic detection of membrane morphology changes in Jurkat T-cells undergoing etoposide-induced apoptosis. , 2007, IET nanobiotechnology.

[17]  G. Markx,et al.  A comparative study of cell death using electrical capacitance measurements and dielectrophoresis , 2008 .

[18]  Thomas Maskow,et al.  On-line monitoring of lipid storage in yeasts using impedance spectroscopy. , 2008, Journal of biotechnology.

[19]  M. Terasaki,et al.  Coping with the inevitable: how cells repair a torn surface membrane , 2001, Nature Cell Biology.

[20]  Peter R C Gascoyne,et al.  Detection of cellular responses to toxicants by dielectrophoresis. , 2002, Biochimica et biophysica acta.

[21]  Ulrich Zimmermann,et al.  Electro-rotation: development of a technique for dielectric measurements on individual cells and particles , 1988 .

[22]  E. Cummings,et al.  Dielectrophoretic concentration and separation of live and dead bacteria in an array of insulators. , 2004, Analytical chemistry.

[23]  R Voyer,et al.  On-line monitoring of the progress of infection in Sf-9 insect cell cultures using relative permittivity measurements. , 1999, Biotechnology and bioengineering.

[24]  T. Saibara,et al.  Multifrequency method for dielectric monitoring of cold-preserved organs. , 2000, Physics in medicine and biology.

[25]  Gerard H. Markx,et al.  Electrorotation of beads of immobilized cells , 2007 .

[26]  Urban Seger,et al.  Dielectric spectroscopy in a micromachined flow cytometer: theoretical and practical considerations. , 2004, Lab on a chip.

[27]  J. E. Dowd,et al.  On-line Measurements and Control of Viable Cell Density in Cell Culture Manufacturing Processes using Radio-frequency Impedance , 2006, Cytotechnology.

[28]  Koji Asami,et al.  Effects of copper on dielectric properties of E. coli cells. , 2007, Colloids and surfaces. B, Biointerfaces.

[29]  Hywel Morgan,et al.  AC ELECTROKINETICS: COLLOIDS AND NANOPARTICLES. , 2002 .

[30]  T. Jones,et al.  Electro-orientation of ellipsoidal erythrocytes. Theory and experiment. , 1993, Biophysical journal.

[31]  The comparative influence of substituted phenols (especially chlorophenols) on yeast cells assayed by electro-rotation and other methods. , 1988, Biochimica et biophysica acta.

[32]  Geoffrey Esteban,et al.  On-line monitoring of infected Sf-9 insect cell cultures by scanning permittivity measurements and comparison with off-line biovolume measurements , 2007, Cytotechnology.

[33]  R. Pethig,et al.  Use of dielectrophoretic collection spectra for characterizing differences between normal and cancerous cells , 1992, Conference Record of the 1992 IEEE Industry Applications Society Annual Meeting.

[34]  D. Kell,et al.  Hydrodynamic deposition: a novel method of cell immobilization. , 1990, Enzyme and microbial technology.

[35]  Douglas B. Kell,et al.  Dielectric permittivity of microbial suspensions at radio frequencies: a novel method for the real-time estimation of microbial biomass , 1987 .

[36]  Christopher L. Davey,et al.  On the audio- and radio-frequency dielectric behaviour of anchorage-independent, mouse L929-derived LS fibroblasts , 1988 .

[37]  M. Kent,et al.  Intangible but not intractable: the prediction of fish ‘quality’ variables using dielectric spectroscopy , 2007 .

[38]  Ailiang Chen,et al.  Electrokinetic measurements of dielectric properties of membrane for apoptotic HL-60 cells on chip-based device , 2007, Biomedical microdevices.

[39]  T. Lisec,et al.  Particle micromanipulator consisting of two orthogonal channels with travelling-wave electrode structures , 1994 .

[40]  Peter R. C. Gascoyne,et al.  Dielectrophoresis-based sample handling in general-purpose programmable diagnostic instruments , 2004, Proceedings of the IEEE.

[41]  Michael P Hughes,et al.  Differences in the biophysical properties of membrane and cytoplasm of apoptotic cells revealed using dielectrophoresis. , 2006, Biochimica et biophysica acta.

[42]  P. Seeman,et al.  The membrane actions of anesthetics and tranquilizers. , 1972, Pharmacological reviews.

[43]  Michael P Hughes,et al.  Rapid assessment of early biophysical changes in K562 cells during apoptosis determined using dielectrophoresis , 2006, International journal of nanomedicine.

[44]  B. Kirby,et al.  Continuous-flow particle separation by 3D Insulative dielectrophoresis using coherently shaped, dc-biased, ac electric fields. , 2007, Analytical chemistry.

[45]  Urs von Stockar,et al.  On‐line biomass monitoring of CHO perfusion culture with scanning dielectric spectroscopy , 2003, Biotechnology and bioengineering.

[46]  Arto Heiskanen,et al.  Chip Based Electroanalytical Systems for Cell Analysis , 2008 .

[47]  Michael P Hughes,et al.  Dielectrophoretic assay of bacterial resistance to antibiotics. , 2003, Physics in medicine and biology.

[48]  Karl Schügerl,et al.  The effect of osmotic and mechanical stresses and enzymatic digestion on the electro-rotation of insect cells (Spodoptera frugiperda) , 1989 .

[49]  S. Schwartz,et al.  Death by any other name. , 1995, The American journal of pathology.

[50]  Ulrich Zimmermann,et al.  The change in the electro-rotation of yeast cells effected by silver ions , 1986 .

[51]  A. K. Solomon,et al.  Advances in Biological and Medical Physics , 1949 .

[52]  D B Kell,et al.  The Use of Dielectric Permittivity for the Control of the Biomass Level during Biotransformations of Toxic Substrates in Continuous Culture , 1995, Biotechnology progress.

[53]  R. Pethig,et al.  Separation of viable and non-viable yeast using dielectrophoresis. , 1994, Journal of biotechnology.

[54]  Mojca Pavlin,et al.  Effective conductivity of a suspension of permeabilized cells: a theoretical analysis. , 2003, Biophysical journal.

[55]  Koji Asami,et al.  Characterization of biological cells by dielectric spectroscopy , 2002 .

[56]  Peter R C Gascoyne,et al.  Membrane dielectric changes indicate induced apoptosis in HL-60 cells more sensitively than surface phosphatidylserine expression or DNA fragmentation. , 2002, Biochimica et biophysica acta.

[57]  Nadeem Hasan Rizvi,et al.  Development of microtitre plates for electrokinetic assays , 2007 .

[58]  Thomas B. Jones,et al.  Numerical determination of the effective moments of non-spherical particles , 2007 .

[59]  Michael P Hughes,et al.  Extraction of dielectric properties of multiple populations from dielectrophoretic collection spectrum data , 2005, Physics in medicine and biology.

[60]  Ronald Pethig,et al.  Dielectrophoretic studies of the activation of human T lymphocytes using a newly developed cell profiling system , 2002, Electrophoresis.

[61]  Y. Huang,et al.  Electrode design for negative dielectrophoresis , 1991 .

[62]  F J Rixon,et al.  Electrorotation studies of baby hamster kidney fibroblasts infected with herpes simplex virus type 1. , 1999, Biophysical journal.

[63]  J. Maxwell A Treatise on Electricity and Magnetism , 1873, Nature.

[64]  Robert Voyer,et al.  On‐Line Monitoring of Physiological Parameters of Insect Cell Cultures during the Growth and Infection Process , 2000, Biotechnology progress.

[65]  Christopher L. Davey,et al.  Real-time monitoring of cellular biomass: Methods and applications , 1990 .

[66]  M. Hughes,et al.  Rapid determination of antibiotic resistance in E. coli using dielectrophoresis , 2007, Physics in medicine and biology.

[67]  B. Cookson,et al.  Apoptosis, Pyroptosis, and Necrosis: Mechanistic Description of Dead and Dying Eukaryotic Cells , 2005, Infection and Immunity.

[68]  F F Becker,et al.  Changes in Friend murine erythroleukaemia cell membranes during induced differentiation determined by electrorotation. , 1994, Biochimica et biophysica acta.

[69]  Christopher L. Davey,et al.  The dielectric properties of biological cells at radiofrequencies : Applications in biotechnology , 1999 .

[70]  R. Pethig,et al.  Effect of biocide concentration on electrorotation spectra of yeast cells. , 1996, Biochimica et biophysica acta.

[71]  J. Gimsa,et al.  On the temperature dependence of the dielectric membrane properties of human red blood cells. , 2007, Bioelectrochemistry.

[72]  U. Zimmermann,et al.  Dielectric spectroscopy of Schizosaccharomyces pombe using electrorotation and electroorientation. , 2001, Biochimica et biophysica acta.

[73]  Future trends in diagnosis using laboratory-on-a-chip technologies. , 1999, Parasitology.

[74]  G. Markx,et al.  Electro-orientation of Schizosaccharomyces pombe in high conductivity media. , 2002, Journal of microbiological methods.

[75]  I. Lamprecht,et al.  Dielectric properties of yeast cells as determined by electrorotation. , 1992, Biochimica et biophysica acta.

[76]  D. Kell,et al.  Dielectric Spectroscopy: a Rapid Method for the Determination of Solvent Biocompatibility During Biotransformations , 1989 .

[77]  D. Ivnitski,et al.  A new electro-optical approach to rapid assay of cell viability. , 2007, Biosensors & bioelectronics.

[78]  V. Raicu,et al.  Effects of cetyltrimethylammonium bromide (CTAB) surfactant upon the dielectric properties of yeast cells. , 1998, Biochimica et biophysica acta.

[79]  D B Kell,et al.  Dormancy in non-sporulating bacteria. , 1993, FEMS microbiology reviews.

[80]  Y. Huang,et al.  Differences in the AC electrodynamics of viable and non-viable yeast cells determined through combined dielectrophoresis and electrorotation studies. , 1992, Physics in medicine and biology.

[81]  A. Bonincontro,et al.  Dielectric Properties of the Plasma Membrane of Cultured Murine Fibroblasts Treated with a Nonterpenoid Extract of Azadirachta indica Seeds , 2007, Journal of Membrane Biology.

[82]  H. Schwan Electrical properties of tissue and cell suspensions. , 1957, Advances in biological and medical physics.

[83]  U. Zimmermann,et al.  The effect of mercuric salts on the electro-rotation of yeast cells and comparison with a theoretical model. , 1987, Biochimica et biophysica acta.

[84]  Vladimir L. Sukhorukov,et al.  Hypotonically induced changes in the plasma membrane of cultured mammalian cells , 1993, The Journal of Membrane Biology.

[85]  H. O. Fatoyinbo,et al.  Rapid‐on‐chip determination of dielectric properties of biological cells using imaging techniques in a dielectrophoresis dot microsystem , 2008, Electrophoresis.

[86]  V. Raicu,et al.  Protein influence on the plasma membrane dielectric properties: in vivo study utilizing dielectric spectroscopy and fluorescence microscopy. , 2007, Bioelectrochemistry.

[87]  R. Hölzel,et al.  Non-invasive determination of bacterial single cell properties by electrorotation. , 1999, Biochimica et biophysica acta.

[88]  Thomas B. Jones,et al.  Electromechanics of Particles , 1995 .

[89]  C. Laane,et al.  On optimizing organic solvents in multi-liquid-phase biocatalysis , 1985 .

[90]  Christopher L. Davey,et al.  THE PERMITTISTAT : A NOVEL TYPE OF TURBIDOSTAT , 1991 .

[91]  D. Mcrae,et al.  Changes in the noninvasive, in vivo electrical impedance of three xenografts during the necrotic cell-response sequence. , 1999, International journal of radiation oncology, biology, physics.

[92]  R. Kotin,et al.  Process optimization of large-scale production of recombinant adeno-associated vectors using dielectric spectroscopy , 2007, Applied Microbiology and Biotechnology.

[93]  Ronald Pethig,et al.  Parasite viability by electrorotation , 2001 .

[94]  G. Markx,et al.  Dielectric spectroscopy as a novel and convenient tool for the study of the shear sensitivity of plant cells in suspension culture. , 1991, Journal of biotechnology.

[95]  On the dielectric method of monitoring cellular viability , 1993 .

[96]  H. Fricke,et al.  A Mathematical Treatment of the Electric Conductivity and Capacity of Disperse Systems ii. The Capacity of a Suspension of Conducting Spheroids Surrounded by a Non-Conducting Membrane for a Current of Low Frequency , 1925 .

[97]  Michael P. Hughes,et al.  Nanoelectromechanics in Engineering and Biology , 2002 .

[98]  R. Hölzel Nystatin-induced changes in yeast monitored by time-resolved automated single cell electrorotation. , 1998, Biochimica et biophysica acta.

[99]  K. Foster,et al.  RF-field interactions with biological systems: Electrical properties and biophysical mechanisms , 1980, Proceedings of the IEEE.

[100]  D B Kell,et al.  Solvent selection for whole cell biotransformations in organic media. , 1995, Critical reviews in biotechnology.

[101]  Stephan Gabos,et al.  Dynamic monitoring of cytotoxicity on microelectronic sensors. , 2005, Chemical research in toxicology.

[102]  R. Bashir,et al.  Dielectrophoretic separation and manipulation of live and heat-treated cells of Listeria on microfabricated devices with interdigitated electrodes , 2002 .

[103]  O. Ignatov,et al.  Action of ampicillin and kanamicin on the electrophysical characteristics of Escherichia coli cells , 2005 .

[104]  Ronald Pethig,et al.  Dielectric and electronic properties of biological materials , 1979 .

[105]  S. Gawad,et al.  Single cell dielectric spectroscopy , 2007 .

[106]  T. Tsong,et al.  Dielectrophoresis and electrorotation of neurospora slime and murine myeloma cells. , 1991, Biophysical journal.

[107]  K. Kaler,et al.  Dual-frequency dielectrophoretic levitation of Canola protoplasts. , 1992, Biophysical journal.

[108]  D. Kell,et al.  The passive electrical properties of biological systems: their significance in physiology, biophysics and biotechnology. , 1987, Physics in medicine and biology.

[109]  H. Umakoshi,et al.  Detection of a heat stress-mediated interaction between protein and phospholipid membrane using dielectric measurement. , 2003, Journal of bioscience and bioengineering.

[110]  H. Fricke THE ELECTRIC CAPACITY OF SUSPENSIONS WITH SPECIAL REFERENCE TO BLOOD , 1925, The Journal of general physiology.