An optical tweezer in asymmetrical vortex Bessel-Gaussian beams

We study an optical micromanipulation that comprises trapping, rotating, and transporting 5-μm polystyrene microbeads in asymmetric Bessel-Gaussian (BG) laser beams. The beams that carry orbital angular momentum are generated by means of a liquid crystal microdisplay and focused by a microobjective with a numerical aperture of NA = 0.85. We experimentally show that given a constant topological charge, the rate of microparticle motion increases near linearly with increasing asymmetry of the BG beam. Asymmetric BG beams can be used instead of conventional Gaussian beam for trapping and transferring live cells without thermal damage.

[1]  Quantitative characterization for dielectrophoretic behavior of biological cells using optical tweezers , 2014 .

[2]  Miles J. Padgett,et al.  Observation of the vortex structure of a non-integer vortex beam , 2004 .

[3]  A. Kovalev,et al.  Asymmetric Bessel modes. , 2014, Optics letters.

[4]  David L. Andrews,et al.  Structured Light and Its Applications: An Introduction to Phase-Structured Beams and Nanoscale Optical Forces , 2008 .

[5]  F. Gori,et al.  Bessel-Gauss beams , 1987 .

[6]  Eleanor Stride,et al.  Trapping and manipulation of microscopic bubbles with a scanning optical tweezer , 2006 .

[7]  R. Skidanov,et al.  Asymmetric Bessel-Gauss beams. , 2014, Journal of the Optical Society of America. A, Optics, image science, and vision.

[8]  A. Porfirev,et al.  Tight focusing of an asymmetric Bessel beam , 2015 .

[9]  Kenneth B. Crozier,et al.  Microfabricated water immersion zone plate optical tweezer , 2008 .

[10]  Li-Gang Wang,et al.  Dynamic radiation force of a pulsed gaussian beam acting on rayleigh dielectric sphere. , 2007, Optics express.

[11]  Michael V Berry,et al.  Optical vortices evolving from helicoidal integer and fractional phase steps , 2004 .

[12]  N. B. Viana,et al.  Absolute calibration of optical tweezers including aberrations , 2012 .

[13]  M. A. Rykov,et al.  Modifying the laser beam intensity distribution for obtaining improved strength characteristics of an optical trap. , 2014, Applied optics.

[14]  J. Hoogenboom,et al.  Patterning surfaces with colloidal particles using optical tweezers , 2002 .

[15]  J. T. Andrews,et al.  Trapping sub-micron Size Particles in Holographic Optical Tweezers , 2014 .

[16]  S. A. Goorden,et al.  Superpixel-based spatial amplitude and phase modulation using a digital micromirror device. , 2014, Optics express.

[17]  A. A. Serafetinides,et al.  Red blood cell micromanipulation with elliptical laser beam profile optical tweezers in different osmolarity conditions , 2011, European Conference on Biomedical Optics.