Study on the Thermal and Dielectric Properties of SrTiO 3 /Epoxy Nanocomposites

SrTiO 3 /epoxy nanocomposites are prepared using the facile solution-processing technique by incorporating SrTiO 3 nanoparticles with different weight fractions into the epoxy resin host. The morphology of the nanoparticles and composites, as well as the thermal conduction characteristics and electrical properties of the composites were investigated via conventional testing methods. The thermal conductivity increased along with the SrTiO 3 weight fractions, and the thermal conductivity of the SrTiO 3 /epoxy composite with 40 wt % weight fraction increased to 0.52 W/mK. The dielectric constant increased along with the weight fractions and decreased along with frequency, thereby suggesting that the interfacial and dipole polarization do not follow the changes in the electrical field direction at high frequency. The dielectric constants at 1 kHz frequency increased along with temperature. Surface breakdown tests illustrated further improvements in the thermal and electrical properties of the composites. In the same time span of 40 s, the 40 wt % nanocomposite demonstrated a rapid temperature decline rate of 6.77 °C/s, which was 47% faster than that of the pure epoxy sample. The surface breakdown voltage also increased along with the weight fractions. The functional composites can solve the key problem in the intelligentization, miniaturization, and high-efficiency of the gas-insulated switchgear, which warrants further research.

[1]  Tao Ai,et al.  A novel fiber-reinforced polyethylene composite with added silicon nitride particles for enhanced thermal conductivity , 2009 .

[2]  D. Sellmyer,et al.  Synthesis of monodisperse TiO2-paraffin core-shell nanoparticles for improved dielectric properties. , 2010, ACS nano.

[3]  Peter J. Hotchkiss,et al.  Phosphonic Acid‐Modified Barium Titanate Polymer Nanocomposites with High Permittivity and Dielectric Strength , 2007 .

[4]  M. J. Thomas,et al.  Corona aging studies on silicone rubber nanocomposites , 2010, IEEE Transactions on Dielectrics and Electrical Insulation.

[5]  Ning Wang,et al.  Interfacial Thermal Resistance and Thermal Conductivity in Nanograined SrTiO3 , 2010 .

[6]  Sang Il Seok,et al.  Electrical Energy Storage in Ferroelectric Polymer Nanocomposites Containing Surface-Functionalized BaTiO3 Nanoparticles , 2008 .

[7]  Qiuyu Zhang,et al.  Thermal conductivity and mechanical properties of aluminum nitride filled linear low‐density polyethylene composites , 2009 .

[8]  Shaoyun Guo,et al.  Enhanced thermally conductivity and mechanical properties of polyethylene (PE)/boron nitride (BN) composites through multistage stretching extrusion , 2013 .

[9]  B. Du,et al.  Effect of concentration on tracking failure of epoxy/TiO2 nanocomposites under dc voltage , 2012, IEEE Transactions on Dielectrics and Electrical Insulation.

[10]  A. Vittaya,et al.  Molecular Dynamics Simulation of Strontium Titanate , 2010 .

[11]  Bodo Fiedler,et al.  Evaluation and identification of electrical and thermal conduction mechanisms in carbon nanotube/epoxy composites , 2006 .

[12]  Xiaoxing Zhang,et al.  Improving electrical properties of SrTiO3/epoxy nanocomposites with high thermal conductivity , 2016, 2016 IEEE International Conference on High Voltage Engineering and Application (ICHVE).

[13]  Hong Wang,et al.  Enhanced dielectric properties of BaTiO3/poly(vinylidene fluoride) nanocomposites for energy storage applications , 2013 .

[14]  H. Sodano,et al.  High energy density nanocomposite capacitors using non-ferroelectric nanowires , 2013 .

[15]  Xingyi Huang,et al.  “Grafting to” route to PVDF-HFP-GMA/BaTiO3 nanocomposites with high dielectric constant and high thermal conductivity for energy storage and thermal management applications , 2014 .

[16]  D. Sellmyer,et al.  Cluster synthesis of monodisperse rutile-TiO2 nanoparticles and dielectric TiO2–vinylidene fluoride oligomer nanocomposites , 2011, Nanotechnology.

[17]  Nikolai Uvarov,et al.  Estimation of composites conductivity using a general mixing rule , 2000 .

[18]  C. L. Choy,et al.  Thermal conductivity of semicrystalline polymers — a model , 1977 .

[19]  R. Brutchey,et al.  Effect of surface modification on the dielectric properties of BaTiO3 nanocrystals. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[20]  K. Kurabayashi Anisotropic Thermal Properties of Solid Polymers , 2001 .

[21]  W. Chen,et al.  Synthesis of barium strontium titanate nanorods in reverse microemulsion , 2007 .

[22]  B. Nysten,et al.  Intra and interchain thermal conduction in polymers , 1994 .

[23]  K. Moon,et al.  Exfoliated hexagonal boron nitride-based polymer nanocomposite with enhanced thermal conductivity for electronic encapsulation , 2014 .

[24]  L. Luo,et al.  Ultrahigh dielectric constant composites based on the oleic acid modified ferroferric oxide nanoparticles and polyvinylidene fluoride , 2013 .

[25]  Haixiong Tang,et al.  Synthesis of High Aspect Ratio BaTiO3 Nanowires for High Energy Density Nanocomposite Capacitors , 2013 .

[26]  J. L. Baptista,et al.  Dielectric properties of bismuth doped Ba1−xSrxTiO3 ceramics , 2001 .

[27]  Zhi-Min Dang,et al.  Influence of silane coupling agent on morphology and dielectric property in BaTiO3/polyvinylidene fluoride composites , 2006 .

[28]  P. Jiang,et al.  Influence of interface structure on dielectric properties of epoxy/alumina nanocomposites , 2012, Macromolecular Research.

[29]  권용구,et al.  High k Dielectric Sol Gel Hybrid Materials , 2010 .