Hybrid learning mechanism for interval A2-C1 type-2 non-singleton type-2 Takagi-Sugeno-Kang fuzzy logic systems

A proposed learning methodology based on a hybrid mechanism for training interval A2-C1 type-2 non-singleton type-2 Takagi-Sugeno-Kang fuzzy logic systems uses a recursive square-root filter to tune the type-1 consequent parameters and the steepest descent method to tune the interval type-2 antecedent parameters. The proposed hybrid-learning algorithm changes the interval type-2 model parameters adaptively to minimize some criterion function as new information becomes available and to match desired input-output data pairs. Its antecedent sets are type-2 fuzzy sets, its consequent sets are type-1 fuzzy sets, and its inputs are interval type-2 non-singleton fuzzy numbers with uncertain standard deviations. As reported in the literature, the performance indices of hybrid models have proved to be better than those of the individual training mechanisms used alone. Comparison with non-hybrid interval A2-C1 type-2 Takagi-Sugeno-Kang fuzzy logic systems and with non-hybrid A1-C0 type-1 Takagi-Sugeno-Kang fuzzy logic systems shows that the proposed hybrid mechanism is a well-performing non-linear adaptive method that enables the interval type-2 fuzzy model to match an unknown non-linear mapping and to converge very fast. Experiments were carried out involving the application of the hybrid interval A2-C1 type-2 non-singleton type-2 Takagi-Sugeno-Kang fuzzy logic systems for modeling and prediction of the scale-breaker entry temperature in a hot strip mill for three different types of coils. The results demonstrate how the interval type-2 fuzzy system learns from selected input-output data pairs and improves its performance as hybrid training progresses.

[1]  Feng Lin,et al.  Theory of Extended Fuzzy Discrete-Event Systems for Handling Ranges of Knowledge Uncertainties and Subjectivity , 2009, IEEE Transactions on Fuzzy Systems.

[2]  Jin Bae Park,et al.  A fuzzy Lyapunov function approach to estimating the domain of attraction for continuous-time Takagi-Sugeno fuzzy systems , 2012, Inf. Sci..

[3]  Gerardo M. Mendez,et al.  Interval Type-2 ANFIS , 2008, Innovations in Hybrid Intelligent Systems.

[4]  Disha Sharma,et al.  Designing and Modeling Fuzzy Control Systems , 2011 .

[5]  Gerardo M. Mendez,et al.  Hybrid learning for interval type-2 fuzzy logic systems based on orthogonal least-squares and back-propagation methods , 2009, Inf. Sci..

[6]  Long Li,et al.  A modified gradient-based neuro-fuzzy learning algorithm and its convergence , 2010, Inf. Sci..

[7]  Miguel A. Melgarejo,et al.  An Embedded Type-2 Fuzzy Processor For The Inverted Pendulum Control Problem , 2011 .

[8]  Oscar Castillo,et al.  An Efficient Computational Method to Implement Type-2 Fuzzy Logic in Control Applications , 2007, Analysis and Design of Intelligent Systems using Soft Computing Techniques.

[9]  Jerry M. Mendel,et al.  Uncertainty measures for interval type-2 fuzzy sets , 2007, Inf. Sci..

[10]  Witold Pedrycz,et al.  Fundamentals of a Fuzzy-Logic-Based Generalized Theory of Stability , 2009, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[11]  Jerry M. Mendel,et al.  On the Stability of Interval Type-2 TSK Fuzzy Logic Control Systems , 2010, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[12]  Chuen-Tsai Sun,et al.  Neuro-fuzzy modeling and control , 1995, Proc. IEEE.

[13]  J. Mendel,et al.  An introduction to type-2 TSK fuzzy logic systems , 1999, FUZZ-IEEE'99. 1999 IEEE International Fuzzy Systems. Conference Proceedings (Cat. No.99CH36315).

[14]  Oscar Castillo,et al.  An improved method for edge detection based on interval type-2 fuzzy logic , 2010, Expert Syst. Appl..

[15]  Jerry M. Mendel,et al.  On the Continuity of Type-1 and Interval Type-2 Fuzzy Logic Systems , 2011, IEEE Transactions on Fuzzy Systems.

[16]  Luc Baron,et al.  Type-2 TSK Fuzzy Logic System and its Type-1 Counterpart , 2011 .

[17]  Hani Hagras,et al.  A hierarchical type-2 fuzzy logic control architecture for autonomous mobile robots , 2004, IEEE Transactions on Fuzzy Systems.

[18]  E. Mizutani,et al.  Neuro-Fuzzy and Soft Computing-A Computational Approach to Learning and Machine Intelligence [Book Review] , 1997, IEEE Transactions on Automatic Control.

[19]  Enrique E. Mombello,et al.  Expert system for the assessment of power transformer insulation condition based on type-2 fuzzy logic systems , 2011, Expert Syst. Appl..

[20]  Ernesto Damiani,et al.  Designing of a type-2 fuzzy logic filter for improving edge-preserving restoration of interlaced-to-progressive conversion , 2009, Inf. Sci..

[21]  Tzuu-Hseng S. Li,et al.  Design of interval type-2 fuzzy sliding-mode controller , 2008, Inf. Sci..

[22]  Jerry M. Mendel,et al.  On the importance of interval sets in type-2 fuzzy logic systems , 2001, Proceedings Joint 9th IFSA World Congress and 20th NAFIPS International Conference (Cat. No. 01TH8569).

[23]  Witold Pedrycz,et al.  Type-2 fuzzy neural networks with fuzzy clustering and differential evolution optimization , 2011, Inf. Sci..

[24]  Patricia Melin,et al.  A hybrid approach for image recognition combining type-2 fuzzy logic, modular neural networks and the Sugeno integral , 2009, Inf. Sci..

[25]  Hao Ying,et al.  Interval Type-2 Takagi-Sugeno fuzzy systems with linear rule consequent are universal approximators , 2009, NAFIPS 2009 - 2009 Annual Meeting of the North American Fuzzy Information Processing Society.

[26]  Ibrahim A. Hameed,et al.  Simplified architecture of a type-2 fuzzy controller using four embedded type-1 fuzzy controllers and its application to a greenhouse climate control system , 2009 .

[27]  Rafael Colás,et al.  Modelling and control of coiling entry temperature using interval type-2 fuzzy logic systems , 2010 .

[28]  Seungwoo Kim,et al.  Takagi-Sugeno fuzzy model based indirect adaptive fuzzy observer and controller design , 2010, Inf. Sci..

[29]  Connectives I. Burhan Turksen Interval Valued Fuzzy Sets and Fuzzy , 1993 .

[30]  Ricardo Martínez-Soto,et al.  Optimization of Interval Type-2 Fuzzy Logic Controllers for a Perturbed Autonomous Wheeled Mobile Robot Using Genetic Algorithms , 2009, Soft Computing for Hybrid Intelligent Systems.

[31]  Dongrui Wu,et al.  Fuzzy experts on recreational vessels, a risk modelling approach for marine invasions , 2010 .

[32]  Robert Ivor John,et al.  On Constructing Parsimonious Type-2 Fuzzy Logic Systems via Influential Rule Selection , 2009, IEEE Transactions on Fuzzy Systems.

[33]  Jerry M. Mendel,et al.  Interval type-2 fuzzy logic systems , 2000, Ninth IEEE International Conference on Fuzzy Systems. FUZZ- IEEE 2000 (Cat. No.00CH37063).

[34]  Miin-Shen Yang,et al.  On similarity and inclusion measures between type-2 fuzzy sets with an application to clustering , 2009, Comput. Math. Appl..

[35]  Milos Manic,et al.  Interval Type-2 fuzzy voter design for fault tolerant systems , 2011, Inf. Sci..

[36]  Ricardo Tanscheit,et al.  Hierarchical type-2 neuro-fuzzy BSP model , 2011, Inf. Sci..

[37]  Li-Xin Wang,et al.  Solving fuzzy relational equations through network training , 1993, [Proceedings 1993] Second IEEE International Conference on Fuzzy Systems.

[38]  Türkay Dereli,et al.  Industrial applications of type-2 fuzzy sets and systems: A concise review , 2011, Comput. Ind..

[39]  Hani Hagras,et al.  Adaptive Non-singleton Type-2 Fuzzy Logic Systems: A Way Forward for Handling Numerical Uncertainties in Real World Applications , 2011, Int. J. Comput. Commun. Control.

[40]  Oscar Castillo,et al.  Face Recognition With an Improved Interval Type-2 Fuzzy Logic Sugeno Integral and Modular Neural Networks , 2011, IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans.

[41]  Witold Pedrycz,et al.  The development of granular metastructures and their use in a multifaceted representation of data and models , 2010, Kybernetes.

[42]  Oscar Castillo,et al.  Interval Type-2 TSK Fuzzy Logic Systems Using Hybrid Learning Algorithm , 2005, The 14th IEEE International Conference on Fuzzy Systems, 2005. FUZZ '05..

[43]  R. Abdessemed,et al.  Type-2 Fuzzy Logic Optimum PV/inverter Sizing Ratio for Grid- connected PV Systems: Application to Selected Algerian Locations , 2011 .

[44]  Alberto Cavazos,et al.  Hot Strip Mill Temperature Prediction using Hybrid Learning Interval Singleton Type-2 FLS , 2003, Modelling and Simulation.

[45]  Yehu Shen Efficient normalized cross correlation calculation method for stereo vision based robot navigation , 2011, Frontiers of Computer Science in China.

[46]  Hani Hagras,et al.  Toward General Type-2 Fuzzy Logic Systems Based on zSlices , 2010, IEEE Transactions on Fuzzy Systems.

[47]  Gerardo M. Mendez,et al.  Entry temperature prediction of a hot strip mill by a hybrid learning type-2 FLS , 2006, J. Intell. Fuzzy Syst..

[48]  Jerry M. Mendel,et al.  On the robustness of Type-1 and Interval Type-2 fuzzy logic systems in modeling , 2011, Inf. Sci..

[49]  Han-Xiong Li,et al.  Spatially Constrained Fuzzy-Clustering-Based Sensor Placement for Spatiotemporal Fuzzy-Control System , 2010, IEEE Transactions on Fuzzy Systems.

[50]  Hak-Keung Lam,et al.  Stability Analysis of Interval Type-2 Fuzzy-Model-Based Control Systems , 2008, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[51]  Oscar Castillo,et al.  A new hybrid approach for plant monitoring and diagnostics using type-2 fuzzy logic and fractal theory , 2003, The 12th IEEE International Conference on Fuzzy Systems, 2003. FUZZ '03..

[52]  Michel Verleysen,et al.  Non-linear financial time series forecasting application to the Bel 20 stock market index , 2000 .

[53]  Ismael Lopez-Juarez,et al.  First-order interval type-2 TSK fuzzy logic systems using a hybrid learning algorithm , 2005 .

[54]  Miguel Alberto Melgarejo Rey,et al.  Embed Type-2 Fuzzy Processor and its Application on Inverted Pendulum Control , 2011 .

[55]  Dong Li,et al.  Robust stability of impulsive Takagi-Sugeno fuzzy systems with parametric uncertainties , 2011, Inf. Sci..

[56]  Adam Niewiadomski,et al.  On Finity, Countability, Cardinalities, and Cylindric Extensions of Type-2 Fuzzy Sets in Linguistic Summarization of Databases , 2010, IEEE Transactions on Fuzzy Systems.

[57]  Juan R. Castro,et al.  Hybrid Learning Algorithm for Interval Type-2 Fuzzy Neural Networks , 2007 .

[58]  Jerry M. Mendel,et al.  Advances in type-2 fuzzy sets and systems , 2007, Inf. Sci..

[59]  O. Castillo,et al.  Evolutionary computing for optimizing type-2 fuzzy systems in intelligent control of non-linear dynamic plants , 2005, NAFIPS 2005 - 2005 Annual Meeting of the North American Fuzzy Information Processing Society.

[60]  Oscar Castillo,et al.  A hybrid learning algorithm for a class of interval type-2 fuzzy neural networks , 2009, Inf. Sci..

[61]  Oscar Castillo,et al.  Universal Approximation of a Class of Interval Type-2 Fuzzy Neural Networks Illustrated with the Case of Non-linear Identification , 2009, IFSA/EUSFLAT Conf..

[62]  Meng Joo Er,et al.  Fire-rule-based direct adaptive type-2 fuzzy H∞ tracking control , 2011, Eng. Appl. Artif. Intell..

[63]  Jing Wang,et al.  Research on Type-2 TSK Fuzzy Logic Systems , 2009, ICFIE.

[64]  Li-Xin Wang,et al.  Adaptive fuzzy systems and control , 1994 .

[65]  Enrique E. Mombello,et al.  Fuzzy risk index for power transformer failures due to external short-circuits , 2009 .

[66]  Guang-Hong Yang,et al.  Relaxed stabilization conditions for continuous-time Takagi-Sugeno fuzzy control systems , 2010, Inf. Sci..

[67]  Jerry M. Mendel,et al.  Type-2 fuzzy sets made simple , 2002, IEEE Trans. Fuzzy Syst..

[68]  Korris Fu-Lai Chung,et al.  Transformation between type-2 TSK fuzzy systems and an uncertain Gaussian mixture model , 2010, Soft Comput..

[69]  S.M. Vaezi-Nejad,et al.  An evolutionary tuning technique for type-2 fuzzy logic controller , 2011 .

[70]  Gerardo M. Mendez,et al.  Modelling and Prediction of the MXNUSD Exchange Rate Using Interval Singleton Type-2 Fuzzy Logic Systems , 2007, Eng. Lett..

[71]  Hani Hagras,et al.  A Type-2 Fuzzy Ontology and Its Application to Personal Diabetic-Diet Recommendation , 2010, IEEE Transactions on Fuzzy Systems.

[72]  Oscar Castillo,et al.  An intelligent hybrid approach for industrial quality control combining neural networks, fuzzy logic and fractal theory , 2004, Inf. Sci..

[73]  Ching Hung Lee,et al.  Nonlinear system identification using Takagi-Sugeno-Kang type interval-valued fuzzy systems via stable learning mechanism , 2011 .

[74]  Gerardo M. Mendez,et al.  Interval Type-1 Non-Singleton Type-2 TSK Fuzzy Logic Systems Using the Hybrid Training Method RLS-BP , 2007, FOCI.

[75]  Oscar Castillo,et al.  Interval type-2 fuzzy logic and modular neural networks for face recognition applications , 2009, Appl. Soft Comput..

[76]  Shie-Jue Lee,et al.  An Enhanced Type-Reduction Algorithm for Type-2 Fuzzy Sets , 2011, IEEE Transactions on Fuzzy Systems.

[77]  Jerry M. Mendel,et al.  Design of Novel Interval Type-2 Fuzzy Controllers for Modular and Reconfigurable Robots: Theory and Experiments , 2011, IEEE Transactions on Industrial Electronics.

[78]  Jerry M. Mendel,et al.  New results about the centroid of an interval type-2 fuzzy set, including the centroid of a fuzzy granule , 2007, Inf. Sci..

[79]  J. Mendel Uncertain Rule-Based Fuzzy Logic Systems: Introduction and New Directions , 2001 .

[80]  Feilong Liu,et al.  An efficient centroid type-reduction strategy for general type-2 fuzzy logic system , 2008, Inf. Sci..

[81]  Oscar Montiel,et al.  Experimental study of intelligent controllers under uncertainty using type-1 and type-2 fuzzy logic , 2007, Inf. Sci..

[82]  Ruixuan Li,et al.  Type-2 fuzzy description logic , 2011, Frontiers of Computer Science in China.

[83]  J. Yi,et al.  SIRMS BASED INTERVAL TYPE-2 FUZZY INFERENCE SYSTEMS: PROPERTIES AND APPLICATION , 2010 .