Screen-printed perovskite-type thick films as gas sensors for environmental monitoring

Abstract Thick films of LaFeO 3 and SmFeO 3 were fabricated by screen-printing technology on alumina substrates with comb-type Au electrodes. The perovskite-type oxide powders used for the preparation of the thick films have been prepared by the thermal decomposition at 700°C of hexacyanocomplexes, Ln[Fe(CN) 6 ] ·  n H 2 O. These powders are ultrafine, homogeneous, and free of intragranular pores. The films have been fired at different temperatures in the 750–1000°C range, in N 2 and air atmospheres. The gas-sensitive electrical response of the thick films have been tested in laboratory, in environments with different gases (CO and NO 2 ) in dry and wet air. For field tests, the prototype sensors have been placed beside a conventional station for environmental monitoring. The electrical response of the thick films has been compared with the results of the analytical instruments for environmental monitoring. The same trend was observed for both systems, with very promising results.

[1]  N. Yamazoe,et al.  Solid-state amperometric NO2 sensor using a sodium ion conductor , 1996 .

[2]  T. Ishihara,et al.  Capacitive Gas Sensor of Mixed Oxide CoO ‐ In2 O 3 to Selectively Detect Nitrogen Monoxide , 1996 .

[3]  Norio Miura,et al.  Development of high-performance solid-electrolyte sensors for NO and NO2 , 1993 .

[4]  Giorgio Sberveglieri,et al.  Reactively sputtered indium tin oxide polycrystalline thin films as NO and NO2 gas sensors , 1990 .

[5]  Liquan Chen,et al.  High Tc superconductors as NOx and COx sensor materials , 1992 .

[6]  Kenkichiro Kobayashi,et al.  NO2 gas-sensing properties of Ga-doped ZnO thin film , 1993 .

[7]  Norio Miura,et al.  Stabilized zirconia-based sensor using oxide electrode for detection of NOx in high-temperature combustion-exhausts , 1996 .

[8]  Tatsumi Ishihara,et al.  The mixed oxide A12O3V2O5 as a semiconductor gas sensor for NO and NO2 , 1989 .

[9]  Gerhard Wiegleb,et al.  Semiconductor gas sensor for detecting NO and CO traces in ambient air of road traffic , 1994 .

[10]  Y. Shimizu,et al.  Variations in I-V characteristics of oxide semiconductors induced by oxidizing gases , 1996 .

[11]  E. Traversa Design of ceramic materials for chemical sensors with novel properties , 1995 .

[12]  N. White,et al.  Thick-film sensors : past, present and future , 1997 .

[13]  Werner Weppner,et al.  Application of fast ionic conductors in solid state galvanic cells for gas sensors , 1986 .

[14]  P. K. Gallagher A simple technique for the preparation of R.E. FeO3 and R.E. CoO3 , 1968 .

[15]  E. Traversa,et al.  Preparation of Perovskite-Type Oxides by the Thermal Decomposition of Heteronuclear Complexes, Ln[FexCo1-x(CN)6]⋅4H2O (Ln=Pr-Yb) , 1997 .

[16]  N. Yamazoe,et al.  Tungsten oxide-based semiconductor sensor for detection of nitrogen oxides in combustion exhaust , 1993 .

[17]  Norio Miura,et al.  Development of gas sensors for environmental protection , 1995 .

[18]  H. Kurachi,et al.  Physicochemical properties of rare earth perovskite oxides used as gas sensor material , 1985 .

[19]  E. Traversa,et al.  Preparation and characterization of perovskite-type Ln′xLn″1–xCoO3 for electroceramic applications , 1996 .

[20]  S. Morrison,et al.  Semiconductor gas sensors , 1985 .

[21]  Giuliano Martinelli,et al.  Gas-sensitive electrical properties of perovskite-type SmFeO3 thick films , 1998 .

[22]  Joop Schoonman,et al.  Taguchi-type NOx gas sensors based on semiconducting mixed oxides , 1993 .

[23]  T. Ishihara,et al.  Sensitive detection of nitrogen oxides based upon capacitance changes in binary oxide mixture , 1996 .

[24]  K. Koumoto,et al.  Oxidizing gas sensing by SiC/ZnO heterocontact―NOx sensing , 1991 .

[25]  V. Lantto,et al.  A study of the temperature dependence of the barrier energy in porous tin dioxide , 1988 .

[26]  Y. Sadaoka,et al.  Preparation of perovskite-type oxides by thermal decomposition of heteronuclear complexes, {Ln[Fe(CN)6]·nH2O}x, (Ln = La ∼ Ho) , 1995 .

[27]  K. Eguchi,et al.  Low‐Temperature Operation of Solid Electrolyte Oxygen Sensors Using Perovskite‐Type Oxide Electrodes and Cathodic Reaction Kinetics , 1990 .

[28]  M. Post,et al.  Thin films of non-stoichiometric perovskites as potential oxygen sensors , 1993 .

[29]  K. Haralambous,et al.  Catalytic properties of some mixed transition-metal oxides , 1991 .

[30]  Yasuhiro Shimizu,et al.  Enhancement of humidity sensitivity for Perovskite-type oxides having semiconductivity. , 1985 .

[31]  Y. Sadaoka,et al.  Thermal decomposition behavior of heteronuclear complexes, Ln[Co(CN)6].nH2O (Ln=La-Yb) , 1995 .

[32]  G. B. Barbi,et al.  Structure of tin oxide layers and operating temperature as factors determining the sensitivity performances to NOx , 1993 .

[33]  P. K. Clifford,et al.  Characteristics of semiconductor gas sensors II. transient response to temperature change , 1982 .

[34]  N. Minh Ceramic Fuel Cells , 1993 .

[35]  V. Lantto,et al.  TiO2 thick-film gas sensors and their suitability for NOx monitoring , 1993 .

[36]  Y. Shimizu,et al.  INVESTIGATION ON A LEAN-BURN OXYGEN SENSOR USING PEROVSKITE-TYPE OXIDES , 1986 .

[37]  E. Traversa,et al.  Mechanism of LaFeO3 Perovskite-Type Oxide Formation from the Thermal Decomposition of d-f Heteronuclear Complex La[Fe(CN)6]-5H2O , 1996 .

[38]  G. Martinelli,et al.  CH4 thick-film gas sensors: Characterization method and theoretical explanation , 1991 .

[39]  Enrico Traversa,et al.  Ceramic sensors for humidity detection: the state-of-the-art and future developments , 1995 .

[40]  G. Martinelli,et al.  Thermal evolution of the microstructure of nanosized LaFeO_3 powders from the thermal decomposition of a heteronuclear complex, La[Fe(CN)_6] · 5H_2O , 1998 .

[41]  M. Carotta,et al.  Microstructural evolution of nanosized LaFeO3 powders from the thermal decomposition of a cyano-complex for thick film gas sensors , 1997 .

[42]  K. Koumoto,et al.  Oxidizing Gas Sensing by SiC/ZnO Heterocontact , 1991 .

[43]  J. Schoonman,et al.  Potentiometric NOx (x = 1, 2) sensors with Ag+-β″-alumina as solid electrolyte and Ag metal as solid reference , 1992 .

[44]  Tatsumi Ishihara,et al.  Capacitive-type sensors for the selective detection of nitrogen oxides , 1995 .

[45]  G. Martinelli,et al.  Influence of additives on the sensing properties of screen-printed SnO2 gas sensors , 1993 .

[46]  Yoshinobu Matsuura,et al.  Metal oxide semiconductor NO2 sensor , 1995 .

[47]  M. Sakamoto,et al.  NO2-sensitive LaFeO3film prepared by thermal decomposition of the heteronuclear complex, {La[Fe(CN)6]·5H2O}x , 1993 .

[48]  R. Doshi,et al.  Perovskite electrodes for sensors , 1992 .

[49]  E. Traversa,et al.  NO2 sensitive LaFeO3 thin films prepared by r.f. sputtering , 1995 .

[50]  M. Faccio,et al.  NO2 gas sensitivity of sol-gel derived α-Fe2O3 thin films , 1995 .

[51]  N. Yamazoe,et al.  Application of metal tungstate-carbonate composite to nitrogen oxides sensor operative at elevated temperature , 1995 .

[52]  G. Martinelli,et al.  Thick-film gas sensors , 1995 .