Periodic orbits: a new language for neuronal dynamics.

A new nonlinear dynamical analysis is applied to complex behavior from neuronal systems. The conceptual foundation of this analysis is the abstraction of observed neuronal activities into a dynamical landscape characterized by a hierarchy of "unstable periodic orbits" (UPOs). UPOs are rigorously identified in data sets representative of three different levels of organization in mammalian brain. An analysis based on UPOs affords a novel alternative method of decoding, predicting, and controlling these neuronal systems.

[1]  Carroll,et al.  Tracking unstable orbits in an experiment. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[2]  K. Aihara,et al.  12. Chaotic oscillations and bifurcations in squid giant axons , 1986 .

[3]  Hatsuo Hayashi,et al.  Chaotic responses of the hippocampal CA3 region to a mossy fiber stimulation in vitro , 1995, Brain Research.

[4]  Celso Grebogi,et al.  Extracting unstable periodic orbits from chaotic time series data , 1997 .

[5]  David Ruelle,et al.  Thermodynamic Formalism: The Mathematical Structures of Classical Equilibrium Statistical Mechanics , 1978 .

[6]  Erik Aurell,et al.  Recycling of strange sets: I. Cycle expansions , 1990 .

[7]  W. Ditto,et al.  Controlling chaos in the brain , 1994, Nature.

[8]  Cvitanovic,et al.  Invariant measurement of strange sets in terms of cycles. , 1988, Physical review letters.

[9]  S J Schiff,et al.  Predictability of EEG interictal spikes. , 1995, Biophysical journal.

[10]  J. J. Hopfield,et al.  Pattern recognition computation using action potential timing for stimulus representation , 1995, Nature.

[11]  A Garfinkel,et al.  Controlling cardiac chaos. , 1992, Science.

[12]  Leonidas D. Iasemidis,et al.  Characterizing nonlinearity in invasive EEG recordings from temporal lobe epilepsy , 1996 .

[13]  Jacques Martinerie,et al.  Unstable periodic orbits in human epileptic activity , 1997 .

[14]  Ditto,et al.  Evidence for determinism in ventricular fibrillation. , 1995, Physical review letters.

[15]  Schuster,et al.  Unstable periodic orbits and prediction. , 1991, Physical review. A, Atomic, molecular, and optical physics.

[16]  T. Sejnowski,et al.  Reliability of spike timing in neocortical neurons. , 1995, Science.

[17]  Erik Aurell,et al.  Recycling of strange sets: II. Applications , 1990 .

[18]  Mw Hirsch,et al.  Chaos In Dynamical Systems , 2016 .

[19]  H Korn,et al.  A nonrandom dynamic component in the synaptic noise of a central neuron. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[20]  A. Garfinkel A mathematics for physiology. , 1983, The American journal of physiology.

[21]  Grebogi,et al.  Detecting unstable periodic orbits in chaotic experimental data. , 1996, Physical review letters.

[22]  Auerbach,et al.  Exploring chaotic motion through periodic orbits. , 1987, Physical review letters.

[23]  Visarath In,et al.  Tracking unstable periodic orbits in nonstationary high-dimensional chaotic systems:Method and experiment , 1997 .

[24]  R. Burke,et al.  Detecting dynamical interdependence and generalized synchrony through mutual prediction in a neural ensemble. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[25]  Sauer,et al.  Reconstruction of dynamical systems from interspike intervals. , 1994, Physical review letters.

[26]  W. Freeman,et al.  How brains make chaos in order to make sense of the world , 1987, Behavioral and Brain Sciences.

[27]  Edward Ott,et al.  Controlling chaos , 2006, Scholarpedia.

[28]  Moss,et al.  Detecting periodic unstable points in noisy chaotic and limit cycle attractors with applications to biology. , 1995, Physical review letters.

[29]  Christini,et al.  Using noise and chaos control to control nonchaotic systems. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[30]  R. Hoffman,et al.  Nonlinear sequence-dependent structure of nigral dopamine neuron interspike interval firing patterns. , 1995, Biophysical journal.

[31]  E. Kostelich,et al.  Characterization of an experimental strange attractor by periodic orbits. , 1989, Physical review. A, General physics.

[32]  Frank Moss,et al.  Detecting Low Dimensional Dynamics in Biological Experiments , 1996, Int. J. Neural Syst..

[33]  L. Pecora,et al.  Tracking unstable orbits in experiments. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[34]  G. Mpitsos,et al.  Evidence for chaos in spike trains of neurons that generate rhythmic motor patterns , 1988, Brain Research Bulletin.

[35]  W. Ditto,et al.  Electric field suppression of epileptiform activity in hippocampal slices. , 1996, Journal of neurophysiology.

[36]  Grebogi,et al.  Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. , 1994, Physical review letters.

[37]  C. King Fractal and chaotic dynamics in nervous systems , 1991, Progress in Neurobiology.

[38]  Erol Baş,et al.  Chaos in Brain Function , 1990, Springer Berlin Heidelberg.

[39]  Ying-Cheng Lai,et al.  Controlling chaos , 1994 .

[40]  James Theiler,et al.  Testing for nonlinearity in time series: the method of surrogate data , 1992 .

[41]  A. N. Sharkovskiĭ Dynamic systems and turbulence , 1989 .

[42]  S J Schiff,et al.  Stochastic versus deterministic variability in simple neuronal circuits: II. Hippocampal slice. , 1994, Biophysical journal.

[43]  S J Schiff,et al.  Stochastic versus deterministic variability in simple neuronal circuits: I. Monosynaptic spinal cord reflexes. , 1994, Biophysical journal.

[44]  Frank Moss,et al.  Characterization of low-dimensional dynamics in the crayfish caudal photoreceptor , 1996, Nature.