Modified Volterra LMS algorithm to fractional order for identification of Hammerstein non-linear system

In this study, a new non-linear recursive mechanism for Volterra least mean square (VLMS) algorithm is proposed in the domain of non-linear adaptive signal processing and control. The proposed adaptive scheme is developed by applying concepts and theories of fractional calculus in weight adaptation structure of standard VLMS approach. The design scheme based on fractional VLMS (F-VLMS) algorithm is applied to parameter estimation problem of non-linear Hammerstein Box-Jenkins system for different noise and step size variations. The adaptive variables of F-VLMS are compared from actual parameters of the system as well as with the results of conventional VLMS for each case to verify its correctness. Comprehensive statistical analyses are conducted based on sufficient large number of independent runs and performance indices in terms of mean square error, variance account for and Nash–Sutcliffe efficiency establish the worth and effectiveness of the scheme.

[1]  Danilo Comminiello,et al.  Hammerstein uniform cubic spline adaptive filters: Learning and convergence properties , 2014, Signal Process..

[2]  Paulo Moura Oliveira,et al.  Particle swarm optimization with fractional-order velocity , 2010 .

[3]  Abdelbaki Djouambi,et al.  Linear fractional order system identification using adjustable fractional order differentiator , 2014, IET Signal Process..

[4]  J. A. Tenreiro Machado,et al.  Fractional order description of DNA , 2015 .

[5]  Nuno M. Fonseca Ferreira,et al.  Introducing the fractional-order Darwinian PSO , 2012, Signal Image Video Process..

[6]  F. Ding Hierarchical multi-innovation stochastic gradient algorithm for Hammerstein nonlinear system modeling , 2013 .

[7]  Syed Muslim Shah Riemann-Liouville operator-based fractional normalised least mean square algorithm with application to decision feedback equalisation of multipath channels , 2016, IET Signal Process..

[8]  Raja Muhammad Asif Zahoor,et al.  Two-stage fractional least mean square identification algorithm for parameter estimation of CARMA systems , 2015, Signal Process..

[9]  J. A. Tenreiro Machado,et al.  Pseudo Phase Plane and Fractional Calculus modeling of western global economic downturn , 2015, Commun. Nonlinear Sci. Numer. Simul..

[10]  Feng Ding,et al.  Identification methods for Hammerstein nonlinear systems , 2011, Digit. Signal Process..

[11]  P. X. Liu,et al.  Multiinnovation Least-Squares Identification for System Modeling , 2010, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[12]  M. J. Korenberg,et al.  The identification of nonlinear biological systems: Wiener and Hammerstein cascade models , 1986, Biological Cybernetics.

[13]  Guowei Yang,et al.  Gradient-based iterative parameter estimation for Box-Jenkins systems , 2010, Comput. Math. Appl..

[14]  Feng Ding,et al.  Parameter estimation algorithms for Hammerstein time-delay systems based on the orthogonal matching pursuit scheme , 2017, IET Signal Process..

[15]  Muhammad Saeed Aslam,et al.  A sliding-window approximation-based fractional adaptive strategy for Hammerstein nonlinear ARMAX systems , 2017 .

[16]  Régine Le Bouquin-Jeannès,et al.  Nonlinear acoustic echo cancellation based on Volterra filters , 2003, IEEE Trans. Speech Audio Process..

[17]  Michel Verhaegen,et al.  Global data-driven modeling of wind turbines in the presence of turbulence , 2013 .

[18]  Manuel Duarte Ortigueira,et al.  Introduction to fractional linear systems. Part 1. Continuous-time case , 2000 .

[19]  Masoud Geravanchizadeh,et al.  Speech Enhancement by Modified Convex Combination of Fractional Adaptive Filtering , 2014 .

[20]  Raja Muhammad Asif Zahoor,et al.  Design of fractional adaptive strategy for input nonlinear Box-Jenkins systems , 2015, Signal Process..

[21]  Zongli Lin,et al.  Robust stability analysis and fuzzy-scheduling control for nonlinear systems subject to actuator saturation , 2003, IEEE Trans. Fuzzy Syst..

[22]  Ahmed S. Elwakil,et al.  Guest Editorial: Fractional-Order Circuits and Systems: Theory, Design, and Applications , 2016, Circuits Syst. Signal Process..

[23]  Li Tan,et al.  Adaptive Volterra filters for active control of nonlinear noise processes , 2001, IEEE Trans. Signal Process..

[24]  Sara Dadras,et al.  Fractional order equivalent series resistance modelling of electrolytic capacitor and fractional order failure prediction with application to predictive maintenance , 2016 .

[25]  Juan E. Cousseau,et al.  Volterra-type models for nonlinear systems identification , 2014 .

[26]  Micael S. Couceiro,et al.  Application of fractional algorithms in the control of a robotic bird , 2010 .

[27]  Raja Muhammad Asif Zahoor,et al.  Adaptive strategies for parameter estimation of Box-Jenkins systems , 2014, IET Signal Process..

[28]  Jing Chen,et al.  An Auxiliary-Model-Based Stochastic Gradient Algorithm for Dual-Rate Sampled-Data Box–Jenkins Systems , 2013, Circuits Syst. Signal Process..

[29]  Guangjun Liu,et al.  Identification of Hammerstein systems using key-term separation principle, auxiliary model and improved particle swarm optimisation algorithm , 2013, IET Signal Process..

[30]  Danilo Comminiello,et al.  Functional Link Adaptive Filters for Nonlinear Acoustic Echo Cancellation , 2013, IEEE Transactions on Audio, Speech, and Language Processing.

[31]  Feng Ding,et al.  Least squares based iterative algorithms for identifying Box-Jenkins models with finite measurement data , 2010, Digit. Signal Process..

[32]  Raja Muhammad Asif Zahoor,et al.  Design of momentum LMS adaptive strategy for parameter estimation of Hammerstein controlled autoregressive systems , 2016, Neural Computing and Applications.

[33]  Tianhong Pan,et al.  Recursive Bayesian Algorithm with Covariance Resetting for Identification of Box–Jenkins Systems with Non-uniformly Sampled Input Data , 2016, Circuits Syst. Signal Process..

[34]  Naveed Ishtiaq Chaudhary,et al.  Design of modified fractional adaptive strategies for Hammerstein nonlinear control autoregressive systems , 2015 .

[35]  Raja Muhammad Asif Zahoor,et al.  A new adaptive strategy to improve online secondary path modeling in active noise control systems using fractional signal processing approach , 2015, Signal Process..

[36]  Naveed Ishtiaq Chaudhary,et al.  Identification of Hammerstein nonlinear ARMAX systems using nonlinear adaptive algorithms , 2015 .

[37]  Yongqiang Ye,et al.  Fractional 90° phase-shift filtering based on the double-sided Grünwald-Letnikov differintegrator , 2015, IET Signal Process..

[38]  Feng Ding,et al.  Performance bounds of forgetting factor least-squares algorithms for time-varying systems with finite measurement data , 2005, IEEE Transactions on Circuits and Systems I: Regular Papers.

[39]  YangQuan Chen,et al.  Guest editorial for special issue on fractional order systems and controls , 2016 .

[40]  Eric Grivel,et al.  Estimating second-order Volterra system parameters from noisy measurements based on an LMS variant or an errors-in-variables method , 2012, Signal Process..

[41]  Raquel Cervigón Abad,et al.  Robust Volterra Filter Design for Enhancement of Electroencephalogram Signal Processing , 2013, Circuits Syst. Signal Process..

[42]  Raja Muhammad Asif Zahoor,et al.  Novel generalization of Volterra LMS algorithm to fractional order with application to system identification , 2018, Neural Computing and Applications.

[43]  José António Tenreiro Machado,et al.  Fractional signal processing and applications , 2015, Signal Process..

[44]  Ruifeng Ding,et al.  Gradient-based parameter estimation for input nonlinear systems with ARMA noises based on the auxiliary model , 2013 .

[45]  F. Mainardi,et al.  Recent history of fractional calculus , 2011 .

[46]  Bumman Kim,et al.  Enhanced Hammerstein Behavioral Model for Broadband Wireless Transmitters , 2011, IEEE Transactions on Microwave Theory and Techniques.

[47]  Giovanni L. Sicuranza,et al.  Efficient adaptive identification of linear-in-the-parameters nonlinear filters using periodic input sequences , 2013, Signal Process..

[48]  Raja Muhammad Asif Zahoor,et al.  Bio-inspired computational heuristics for parameter estimation of nonlinear Hammerstein controlled autoregressive system , 2018, Neural Computing and Applications.